Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian
Learning
- URL: http://arxiv.org/abs/2307.00828v2
- Date: Thu, 13 Jul 2023 23:50:37 GMT
- Title: Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian
Learning
- Authors: Shengbo Wang, Ke Li, Yin Yang, Yuting Cao, Tingwen Huang and Shiping
Wen
- Abstract summary: We develop a novel adaptive safe control framework that integrates meta learning, Bayesian models, and control barrier function (CBF) method.
Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression model.
For a new control task, we refine the meta-learned models using a few samples, and introduce pessimistic confidence bounds into CBF constraints to ensure safe control.
- Score: 33.75998206184497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breaking safety constraints in control systems can lead to potential risks,
resulting in unexpected costs or catastrophic damage. Nevertheless, uncertainty
is ubiquitous, even among similar tasks. In this paper, we develop a novel
adaptive safe control framework that integrates meta learning, Bayesian models,
and control barrier function (CBF) method. Specifically, with the help of CBF
method, we learn the inherent and external uncertainties by a unified adaptive
Bayesian linear regression (ABLR) model, which consists of a forward neural
network (NN) and a Bayesian output layer. Meta learning techniques are
leveraged to pre-train the NN weights and priors of the ABLR model using data
collected from historical similar tasks. For a new control task, we refine the
meta-learned models using a few samples, and introduce pessimistic confidence
bounds into CBF constraints to ensure safe control. Moreover, we provide
theoretical criteria to guarantee probabilistic safety during the control
processes. To validate our approach, we conduct comparative experiments in
various obstacle avoidance scenarios. The results demonstrate that our
algorithm significantly improves the Bayesian model-based CBF method, and is
capable for efficient safe exploration even with multiple uncertain
constraints.
Related papers
- Safe and Efficient Reinforcement Learning Using
Disturbance-Observer-Based Control Barrier Functions [5.571154223075409]
This paper presents a method for safe and efficient reinforcement learning (RL) using disturbance observers (DOBs) and control barrier functions (CBFs)
Our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions.
Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning.
arXiv Detail & Related papers (2022-11-30T18:49:53Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Safe Exploration in Model-based Reinforcement Learning using Control
Barrier Functions [1.005130974691351]
We develop a novel class of CBFs that retain the beneficial properties of CBFs for developing minimally-invasive safe control policies.
We show how these LCBFs can be used to augment a learning-based control policy so as to guarantee safety and then leverage this approach to develop a safe exploration framework.
arXiv Detail & Related papers (2021-04-16T15:29:58Z) - Constrained Model-based Reinforcement Learning with Robust Cross-Entropy
Method [30.407700996710023]
This paper studies the constrained/safe reinforcement learning problem with sparse indicator signals for constraint violations.
We employ the neural network ensemble model to estimate the prediction uncertainty and use model predictive control as the basic control framework.
The results show that our approach learns to complete the tasks with a much smaller number of constraint violations than state-of-the-art baselines.
arXiv Detail & Related papers (2020-10-15T18:19:35Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.