論文の概要: Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2503.17410v1
- Date: Thu, 20 Mar 2025 21:04:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:27.789779
- Title: Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting
- Title(参考訳): 実世界のISPネットワークトラフィック予測のためのディープラーニングモデルの比較分析
- Authors: Josef Koumar, Timotej Smoleň, Kamil Jeřábek, Tomáš Čejka,
- Abstract要約: この研究は、最近発表された総合的な実世界のネットワークトラフィックデータセットであるCESNET-TimeSeries24上で、最先端のディープラーニングモデルを評価する。
その結果,予測精度と計算効率のバランスは,ネットワークの粒度によって異なることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate network traffic forecasting is essential for Internet Service Providers (ISP) to optimize resources, enhance user experience, and mitigate anomalies. This study evaluates state-of-the-art deep learning models on CESNET-TimeSeries24, a recently published, comprehensive real-world network traffic dataset from the ISP network CESNET3 spanning multivariate time series over 40 weeks. Our findings highlight the balance between prediction accuracy and computational efficiency across different levels of network granularity. Additionally, this work establishes a reproducible methodology that facilitates direct comparison of existing approaches, explores their strengths and weaknesses, and provides a benchmark for future studies using this dataset.
- Abstract(参考訳): インターネットサービスプロバイダ(ISP)にとって、リソースの最適化、ユーザエクスペリエンスの向上、異常の軽減には、正確なネットワークトラフィック予測が不可欠である。
この研究は、40週間にわたって多変量時系列にまたがるISPネットワークCESNET3から最近公開された、総合的な実世界のネットワークトラフィックデータセットであるCESNET-TimeSeries24上で、最先端のディープラーニングモデルを評価する。
その結果,予測精度と計算効率のバランスは,ネットワークの粒度によって異なることがわかった。
さらに、この研究は、既存のアプローチを直接比較し、その強みと弱みを探求する再現可能な方法論を確立し、このデータセットを用いた将来の研究のためのベンチマークを提供する。
関連論文リスト
- Overcoming Data Limitations in Internet Traffic Forecasting: LSTM Models with Transfer Learning and Wavelet Augmentation [1.9662978733004601]
小型ISPネットワークにおけるインターネットトラフィックの効果的な予測は、データ可用性の制限によって困難である。
本稿では2つのLSTMモデル(LSTMSeq2SeqとLSTMSeq2SeqAtn)を用いた転送学習とデータ拡張技術を用いてこの問題を考察する。
データセットは実際のインターネットトラフィックテレメトリを表し、さまざまなネットワークドメインにわたる多様なトラフィックパターンに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-09-20T03:18:20Z) - Cellular Traffic Prediction Using Online Prediction Algorithms [5.416701003120508]
本稿では,リアルタイムシナリオにおけるセルラーネットワークトラフィック予測におけるライブ予測アルゴリズムの有効性について検討する。
機械学習モデルに2つのライブ予測アルゴリズムを適用し,その1つは最近提案されたFast LiveStream Prediction (FLSP)アルゴリズムである。
本研究は,従来のオンライン予測アルゴリズムと比較して,FLSPアルゴリズムが非同期データレポートに必要な帯域幅を半減できることを明らかにする。
論文 参考訳(メタデータ) (2024-05-08T17:36:14Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
本稿では,ALOHAネットワークにおけるバーストトラフィック予測に適した機械学習ベースのフレームワークを提案する。
我々は,mMTCネットワークから頻繁に収集されたデータを活用することでLSTMネットワークの状態を更新する,新しい低複雑さオンライン予測アルゴリズムを開発した。
本研究では,単一基地局と数千のデバイスを異なるトラフィック発生特性を持つグループに編成したネットワーク上でのフレームワークの性能を評価する。
論文 参考訳(メタデータ) (2024-05-08T17:28:07Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Transfer Learning Based Efficient Traffic Prediction with Limited
Training Data [3.689539481706835]
インターネットトラフィックの効率的な予測は、積極的な管理を確保するための自己組織化ネットワーク(SON)の不可欠な部分である。
限られた訓練データを用いたネットワークトラフィック予測における深部シーケンスモデルは、現在研究されている研究で広く研究されていない。
不適切な歴史データを用いた交通予測における深層移動学習手法の性能について検討・評価を行った。
論文 参考訳(メタデータ) (2022-05-09T14:44:39Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z) - Deep Echo State Networks for Short-Term Traffic Forecasting: Performance
Comparison and Statistical Assessment [8.586891288891263]
短期的な交通予測では、関心のある交通パラメータの将来の値を正確に予測することが目的である。
Deep Echo State Networksは、考慮されている他のモデリングモデルよりも正確なトラフィック予測を実現している。
論文 参考訳(メタデータ) (2020-04-17T11:07:25Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
この研究は幅広いメタラーニングフレームワークを使って肯定的な証拠を提供する。
残余接続はメタラーニング適応機構として機能する。
我々は、ソースTSデータセット上でニューラルネットワークをトレーニングし、異なるターゲットTSデータセット上で再トレーニングすることなくデプロイできることを示します。
論文 参考訳(メタデータ) (2020-02-07T16:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。