Language-specific Neurons Do Not Facilitate Cross-Lingual Transfer
- URL: http://arxiv.org/abs/2503.17456v1
- Date: Fri, 21 Mar 2025 18:08:11 GMT
- Title: Language-specific Neurons Do Not Facilitate Cross-Lingual Transfer
- Authors: Soumen Kumar Mondal, Sayambhu Sen, Abhishek Singhania, Preethi Jyothi,
- Abstract summary: Existing techniques to identify language-specific neurons can be leveraged to enhance cross-lingual task performance of lowresource languages.<n>We find that such neuron-specific interventions are insufficient to yield cross-lingual improvements on downstream tasks.
- Score: 21.205821852762362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingual large language models (LLMs) aim towards robust natural language understanding across diverse languages, yet their performance significantly degrades on low-resource languages. This work explores whether existing techniques to identify language-specific neurons can be leveraged to enhance cross-lingual task performance of lowresource languages. We conduct detailed experiments covering existing language-specific neuron identification techniques (such as Language Activation Probability Entropy and activation probability-based thresholding) and neuron-specific LoRA fine-tuning with models like Llama 3.1 and Mistral Nemo. We find that such neuron-specific interventions are insufficient to yield cross-lingual improvements on downstream tasks (XNLI, XQuAD) in lowresource languages. This study highlights the challenges in achieving cross-lingual generalization and provides critical insights for multilingual LLMs.
Related papers
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Investigating Language-Specific Calibration For Pruning Multilingual Large Language Models [11.421452042888523]
We compare different calibration languages for pruning multilingual models across diverse languages, tasks, models, and SotA pruning techniques.
Our results offer practical suggestions, for example, calibrating in the target language can efficiently retain the language modeling capability but does not necessarily benefit downstream tasks.
arXiv Detail & Related papers (2024-08-26T16:29:13Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
We aim to fill the research gap by examining how neuron activation is shared across tasks and languages.
We classify neurons into four distinct categories based on their responses to a specific input across different languages.
Our analysis reveals the following insights: (i) the patterns of neuron sharing are significantly affected by the characteristics of tasks and examples; (ii) neuron sharing does not fully correspond with language similarity; (iii) shared neurons play a vital role in generating responses, especially those shared across all languages.
arXiv Detail & Related papers (2024-06-13T16:04:11Z) - On the Multilingual Ability of Decoder-based Pre-trained Language Models: Finding and Controlling Language-Specific Neurons [37.32174349956148]
We analyze the neuron-level internal behavior of multilingual decoder-based language models (PLMs)
We show that language-specific neurons are unique, with a slight overlap ( 5%) between languages.
We tamper with less than 1% of the total neurons in each model during inference and demonstrate that tampering with a few language-specific neurons drastically changes the probability of target language occurrence in text generation.
arXiv Detail & Related papers (2024-04-03T03:37:22Z) - Cross-Lingual Transfer Robustness to Lower-Resource Languages on Adversarial Datasets [4.653113033432781]
Cross-lingual transfer capabilities of Multilingual Language Models (MLLMs) are investigated.
Our research provides valuable insights into cross-lingual transfer and its implications for NLP applications.
arXiv Detail & Related papers (2024-03-29T08:47:15Z) - How do Large Language Models Handle Multilingualism? [81.15060972112563]
This study explores how large language models (LLMs) handle multilingualism.
LLMs initially understand the query, converting multilingual inputs into English for task-solving.
In the intermediate layers, they employ English for thinking and incorporate multilingual knowledge with self-attention and feed-forward structures.
arXiv Detail & Related papers (2024-02-29T02:55:26Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - Unraveling Babel: Exploring Multilingual Activation Patterns of LLMs and Their Applications [24.18102112644796]
We study the internal neuron activation patterns of large language models (LLMs) when processing different languages.
We leverage the discovered differences in expert activation frequencies to guide sparse activation and pruning.
Our findings offer new perspectives for applications such as sparse activation and model pruning.
arXiv Detail & Related papers (2024-02-26T07:44:56Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
We propose the multilingual translation model with the high-resource language-specific training (HLT-MT) to alleviate the negative interference.
Specifically, we first train the multilingual model only with the high-resource pairs and select the language-specific modules at the top of the decoder.
HLT-MT is further trained on all available corpora to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2022-07-11T14:33:13Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
We conjecture that multilingual pre-trained models can derive language-universal abstractions about grammar.
We conduct the first large-scale empirical study over 43 languages and 14 morphosyntactic categories with a state-of-the-art neuron-level probe.
arXiv Detail & Related papers (2022-05-04T12:22:31Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z) - Cross-lingual, Character-Level Neural Morphological Tagging [57.0020906265213]
We train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together.
Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
arXiv Detail & Related papers (2017-08-30T08:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.