Cross-lingual, Character-Level Neural Morphological Tagging
- URL: http://arxiv.org/abs/1708.09157v5
- Date: Thu, 6 Jun 2024 08:27:54 GMT
- Title: Cross-lingual, Character-Level Neural Morphological Tagging
- Authors: Ryan Cotterell, Georg Heigold,
- Abstract summary: We train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together.
Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
- Score: 57.0020906265213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even for common NLP tasks, sufficient supervision is not available in many languages -- morphological tagging is no exception. In the work presented here, we explore a transfer learning scheme, whereby we train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together. Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
Related papers
- Low-Resource Named Entity Recognition with Cross-Lingual, Character-Level Neural Conditional Random Fields [68.17213992395041]
Low-resource named entity recognition is still an open problem in NLP.
We present a transfer learning scheme, whereby we train character-level neural CRFs to predict named entities for both high-resource languages and low resource languages jointly.
arXiv Detail & Related papers (2024-04-14T23:44:49Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
We focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets.
We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets.
arXiv Detail & Related papers (2024-02-03T10:41:05Z) - Transfer to a Low-Resource Language via Close Relatives: The Case Study
on Faroese [54.00582760714034]
Cross-lingual NLP transfer can be improved by exploiting data and models of high-resource languages.
We release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS) and new language models trained on all Scandinavian languages.
arXiv Detail & Related papers (2023-04-18T08:42:38Z) - Improving Cross-lingual Information Retrieval on Low-Resource Languages
via Optimal Transport Distillation [21.057178077747754]
In this work, we propose OPTICAL: Optimal Transport distillation for low-resource Cross-lingual information retrieval.
By separating the cross-lingual knowledge from knowledge of query document matching, OPTICAL only needs bitext data for distillation training.
Experimental results show that, with minimal training data, OPTICAL significantly outperforms strong baselines on low-resource languages.
arXiv Detail & Related papers (2023-01-29T22:30:36Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
We propose the multilingual translation model with the high-resource language-specific training (HLT-MT) to alleviate the negative interference.
Specifically, we first train the multilingual model only with the high-resource pairs and select the language-specific modules at the top of the decoder.
HLT-MT is further trained on all available corpora to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2022-07-11T14:33:13Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
We conjecture that multilingual pre-trained models can derive language-universal abstractions about grammar.
We conduct the first large-scale empirical study over 43 languages and 14 morphosyntactic categories with a state-of-the-art neuron-level probe.
arXiv Detail & Related papers (2022-05-04T12:22:31Z) - Morphological Processing of Low-Resource Languages: Where We Are and
What's Next [23.7371787793763]
We focus on approaches suitable for languages with minimal or no annotated resources.
We argue that the field is ready to tackle the logical next challenge: understanding a language's morphology from raw text alone.
arXiv Detail & Related papers (2022-03-16T19:47:04Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
We focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi.
We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models.
arXiv Detail & Related papers (2021-10-26T14:59:16Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP.
We show that such models behave in multiple ways on unseen languages.
arXiv Detail & Related papers (2020-10-24T10:15:03Z) - Transfer learning and subword sampling for asymmetric-resource
one-to-many neural translation [14.116412358534442]
Methods for improving neural machine translation for low-resource languages are reviewed.
Tests are carried out on three artificially restricted translation tasks and one real-world task.
Experiments show positive effects especially for scheduled multi-task learning, denoising autoencoder, and subword sampling.
arXiv Detail & Related papers (2020-04-08T14:19:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.