Dense Passage Retrieval in Conversational Search
- URL: http://arxiv.org/abs/2503.17507v1
- Date: Fri, 21 Mar 2025 19:39:31 GMT
- Title: Dense Passage Retrieval in Conversational Search
- Authors: Ahmed H. Salamah, Pierre McWhannel, Nicole Yan,
- Abstract summary: We present a new method called dense retrieval, which uses a dual-encoder to create contextual embeddings that can be indexed and clustered efficiently at run-time.<n>We propose an end-to-end conversational search system called GPT2QR+DPR, which incorporates various query reformulation strategies to improve retrieval accuracy.<n>Our work contributes to the growing body of research on neural-based retrieval methods in conversational search, and highlights the potential of dense retrieval in improving retrieval accuracy in conversational search systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Information retrieval systems have traditionally relied on exact term match methods such as BM25 for first-stage retrieval. However, recent advancements in neural network-based techniques have introduced a new method called dense retrieval. This approach uses a dual-encoder to create contextual embeddings that can be indexed and clustered efficiently at run-time, resulting in improved retrieval performance in Open-domain Question Answering systems. In this paper, we apply the dense retrieval technique to conversational search by conducting experiments on the CAsT benchmark dataset. We also propose an end-to-end conversational search system called GPT2QR+DPR, which incorporates various query reformulation strategies to improve retrieval accuracy. Our findings indicate that dense retrieval outperforms BM25 even without extensive fine-tuning. Our work contributes to the growing body of research on neural-based retrieval methods in conversational search, and highlights the potential of dense retrieval in improving retrieval accuracy in conversational search systems.
Related papers
- Efficient Conversational Search via Topical Locality in Dense Retrieval [9.38751103209178]
We exploit the topical locality inherent in conversational queries to improve response time.
By leveraging query embedding similarities, we dynamically restrict the search space to semantically relevant document clusters.
Our results show that the proposed system effectively handles complex, multiturn queries with high precision and efficiency.
arXiv Detail & Related papers (2025-04-30T10:56:34Z) - LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers [24.01783076521377]
Retrieval-Augmented Generation (RAG) is a crucial method for mitigating hallucinations in Large Language Models (LLMs)<n>Existing RAG methods typically employ query rewriting to clarify the user intent and manage multi-hop logic, while using hybrid retrieval to expand search scope.<n>We introduce a high-level searcher that decomposes complex queries into atomic queries, independent of any retriever-specific optimizations.<n>To harness the strengths of sparse retrievers for precise keyword retrieval, we have developed a new sparse searcher that employs Lucene syntax to enhance retrieval accuracy.
arXiv Detail & Related papers (2025-02-25T12:09:16Z) - VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
Optimized Search [1.0411820336052784]
We propose VectorSearch, which leverages advanced algorithms, embeddings, and indexing techniques for refined retrieval.
By utilizing innovative multi-vector search operations and encoding searches with advanced language models, our approach significantly improves retrieval accuracy.
Experiments on real-world datasets show that VectorSearch outperforms baseline metrics.
arXiv Detail & Related papers (2024-09-25T21:58:08Z) - Semi-Parametric Retrieval via Binary Bag-of-Tokens Index [71.78109794895065]
SemI-parametric Disentangled Retrieval (SiDR) is a bi-encoder retrieval framework that decouples retrieval index from neural parameters.
SiDR supports a non-parametric tokenization index for search, achieving BM25-like indexing complexity with significantly better effectiveness.
arXiv Detail & Related papers (2024-05-03T08:34:13Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
Often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence.
We introduce a novel retrieval unit, proposition, for dense retrieval.
Experiments reveal that indexing a corpus by fine-grained units such as propositions significantly outperforms passage-level units in retrieval tasks.
arXiv Detail & Related papers (2023-12-11T18:57:35Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
We propose fullmodel (model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model.
To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
arXiv Detail & Related papers (2023-07-02T13:36:36Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
We conduct the first empirical study of generative retrieval techniques across various corpus scales.
We scale generative retrieval to millions of passages with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters.
While generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge.
arXiv Detail & Related papers (2023-05-19T17:33:38Z) - Zero-Shot Retrieval with Search Agents and Hybrid Environments [8.017306481455778]
Current language models can learn symbolic query reformulation policies, in combination with traditional term-based retrieval, but fall short of outperforming neural retrievers.
We extend the previous learning to search setup to a hybrid environment, which accepts discrete query refinement operations, after a first-pass retrieval step via a dual encoder.
Experiments on the BEIR task show that search agents, trained via behavioral cloning, outperform the underlying search system based on a combined dual encoder retriever and cross encoder reranker.
arXiv Detail & Related papers (2022-09-30T13:50:25Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - Phrase Retrieval Learns Passage Retrieval, Too [77.57208968326422]
We study whether phrase retrieval can serve as the basis for coarse-level retrieval including passages and documents.
We show that a dense phrase-retrieval system, without any retraining, already achieves better passage retrieval accuracy.
We also show that phrase filtering and vector quantization can reduce the size of our index by 4-10x.
arXiv Detail & Related papers (2021-09-16T17:42:45Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.