Zero-Shot Retrieval with Search Agents and Hybrid Environments
- URL: http://arxiv.org/abs/2209.15469v2
- Date: Wed, 29 Mar 2023 13:29:35 GMT
- Title: Zero-Shot Retrieval with Search Agents and Hybrid Environments
- Authors: Michelle Chen Huebscher, Christian Buck, Massimiliano Ciaramita,
Sascha Rothe
- Abstract summary: Current language models can learn symbolic query reformulation policies, in combination with traditional term-based retrieval, but fall short of outperforming neural retrievers.
We extend the previous learning to search setup to a hybrid environment, which accepts discrete query refinement operations, after a first-pass retrieval step via a dual encoder.
Experiments on the BEIR task show that search agents, trained via behavioral cloning, outperform the underlying search system based on a combined dual encoder retriever and cross encoder reranker.
- Score: 8.017306481455778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning to search is the task of building artificial agents that learn to
autonomously use a search box to find information. So far, it has been shown
that current language models can learn symbolic query reformulation policies,
in combination with traditional term-based retrieval, but fall short of
outperforming neural retrievers. We extend the previous learning to search
setup to a hybrid environment, which accepts discrete query refinement
operations, after a first-pass retrieval step via a dual encoder. Experiments
on the BEIR task show that search agents, trained via behavioral cloning,
outperform the underlying search system based on a combined dual encoder
retriever and cross encoder reranker. Furthermore, we find that simple
heuristic Hybrid Retrieval Environments (HRE) can improve baseline performance
by several nDCG points. The search agent based on HRE (HARE) matches
state-of-the-art performance, balanced in both zero-shot and in-domain
evaluations, via interpretable actions, and at twice the speed.
Related papers
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - Bridging Search and Recommendation in Generative Retrieval: Does One Task Help the Other? [9.215695600542249]
Generative retrieval for search and recommendation is a promising paradigm for retrieving items.
These generative systems can play a crucial role in centralizing a variety of Information Retrieval (IR) tasks in a single model.
This paper investigates whether and when such a unified approach can outperform task-specific models in the IR tasks of search and recommendation.
arXiv Detail & Related papers (2024-10-22T08:49:43Z) - Bootstrapped Pre-training with Dynamic Identifier Prediction for Generative Retrieval [108.9772640854136]
Generative retrieval uses differentiable search indexes to directly generate relevant document identifiers in response to a query.
Recent studies have highlighted the potential of a strong generative retrieval model, trained with carefully crafted pre-training tasks, to enhance downstream retrieval tasks via fine-tuning.
We introduce BootRet, a bootstrapped pre-training method for generative retrieval that dynamically adjusts document identifiers during pre-training to accommodate the continuing of the corpus.
arXiv Detail & Related papers (2024-07-16T08:42:36Z) - Tree Search for Language Model Agents [69.43007235771383]
We propose an inference-time search algorithm for LM agents to perform exploration and multi-step planning in interactive web environments.
Our approach is a form of best-first tree search that operates within the actual environment space.
It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks.
arXiv Detail & Related papers (2024-07-01T17:07:55Z) - PSDiff: Diffusion Model for Person Search with Iterative and
Collaborative Refinement [59.6260680005195]
We present a novel Person Search framework based on the Diffusion model, PSDiff.
PSDiff formulates the person search as a dual denoising process from noisy boxes and ReID embeddings to ground truths.
Following the new paradigm, we further design a new Collaborative Denoising Layer (CDL) to optimize detection and ReID sub-tasks in an iterative and collaborative way.
arXiv Detail & Related papers (2023-09-20T08:16:39Z) - End-to-End Open Vocabulary Keyword Search With Multilingual Neural
Representations [7.780766187171571]
We propose a neural ASR-free keyword search model which achieves competitive performance.
We extend this work with multilingual pretraining and detailed analysis of the model.
Our experiments show that the proposed multilingual training significantly improves the model performance.
arXiv Detail & Related papers (2023-08-15T20:33:25Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
Generative retrieval aims to generate identifier strings of relevant passages as the retrieval target.
We propose a learning-to-rank framework for generative retrieval, dubbed LTRGR.
This framework only requires an additional learning-to-rank training phase to enhance current generative retrieval systems.
arXiv Detail & Related papers (2023-06-27T05:48:14Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.