OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery
- URL: http://arxiv.org/abs/2503.17604v4
- Date: Tue, 22 Apr 2025 20:31:48 GMT
- Title: OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery
- Authors: Vignesh Prabhakar, Md Amirul Islam, Adam Atanas, Yao-Ting Wang, Joah Han, Aastha Jhunjhunwala, Rucha Apte, Robert Clark, Kang Xu, Zihan Wang, Kai Liu,
- Abstract summary: We introduce OmniScience, a specialized large reasoning model for general science.<n>We develop a battery agent that efficiently ranks molecules as potential electrolyte solvents or additives.<n>We demonstrate via ablation experiments that domain adaptive pretraining and reasoning-based knowledge distillation are critical to attain our performance levels.
- Score: 12.306721865990053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable potential in advancing scientific knowledge and addressing complex challenges. In this work, we introduce OmniScience, a specialized large reasoning model for general science, developed through three key components: (1) domain adaptive pretraining on a carefully curated corpus of scientific literature, (2) instruction tuning on a specialized dataset to guide the model in following domain-specific tasks, and (3) reasoning-based knowledge distillation through fine-tuning to significantly enhance its ability to generate contextually relevant and logically sound responses. We demonstrate the versatility of OmniScience by developing a battery agent that efficiently ranks molecules as potential electrolyte solvents or additives. Comprehensive evaluations reveal that OmniScience is competitive with state-of-the-art large reasoning models on the GPQA Diamond and domain-specific battery benchmarks, while outperforming all public reasoning and non-reasoning models with similar parameter counts. We further demonstrate via ablation experiments that domain adaptive pretraining and reasoning-based knowledge distillation are critical to attain our performance levels, across benchmarks.
Related papers
- ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge [14.6026550444088]
This work focuses on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R.<n>We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry.<n> Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs.
arXiv Detail & Related papers (2025-07-29T16:40:49Z) - Bridging the Plausibility-Validity Gap by Fine-Tuning a Reasoning-Enhanced LLM for Chemical Synthesis and Discovery [0.0]
Large Language Models often generate scientifically plausible but factually invalid information.<n>This paper presents a systematic methodology to bridge this gap by developing a specialized scientific assistant.
arXiv Detail & Related papers (2025-07-09T23:05:23Z) - Dynamic Knowledge Exchange and Dual-diversity Review: Concisely Unleashing the Potential of a Multi-Agent Research Team [53.38438460574943]
IDVSCI is a multi-agent framework built on large language models (LLMs)<n>It incorporates two key innovations: a Dynamic Knowledge Exchange mechanism and a Dual-Diversity Review paradigm.<n>Results show that IDVSCI consistently achieves the best performance across two datasets.
arXiv Detail & Related papers (2025-06-23T07:12:08Z) - Towards Artificial Intelligence Research Assistant for Expert-Involved Learning [64.7438151207189]
Large Language Models (LLMs) and Large Multi-Modal Models (LMMs) have emerged as transformative tools in scientific research.<n>We present textbfARtificial textbfIntelligence research assistant for textbfExpert-involved textbfLearning (ARIEL)
arXiv Detail & Related papers (2025-05-03T14:21:48Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - MOLLM: Multi-Objective Large Language Model for Molecular Design -- Optimizing with Experts [3.9194654197529784]
Molecular design plays a critical role in advancing fields such as drug discovery, materials science, and chemical engineering.
This work introduces the Multi-Objective Large Language Model for Molecular Design (MOLLM), a novel framework that combines domain-specific knowledge with the adaptability of Large Language Models.
arXiv Detail & Related papers (2025-02-18T13:25:00Z) - Probing the limitations of multimodal language models for chemistry and materials research [3.422786943576035]
We introduce MaCBench, a benchmark for evaluating how vision-language models handle real-world chemistry and materials science tasks.<n>We find that while these systems show promising capabilities in basic perception tasks, they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis, and logical inference.<n>Our insights have important implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.
arXiv Detail & Related papers (2024-11-25T21:51:45Z) - Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance.
The model excelled in tasks requiring intricate reasoning and knowledge integration across various fields.
Overall results indicate significant progress towards artificial general intelligence.
arXiv Detail & Related papers (2024-09-27T06:57:00Z) - Knowledge AI: Fine-tuning NLP Models for Facilitating Scientific Knowledge Extraction and Understanding [0.0]
This project investigates the efficacy of Large Language Models (LLMs) in understanding and extracting scientific knowledge across specific domains.
We employ pre-trained models and fine-tune them on datasets in the scientific domain.
arXiv Detail & Related papers (2024-08-04T01:32:09Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
This paper focuses on the impact of different canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement.
Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
arXiv Detail & Related papers (2024-07-11T09:04:12Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering [2.140221068402338]
This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains.
A benchmark dataset is curated to the intricate physical-chemical properties of small molecules, their drugability for pharmacology, alongside the functional attributes of enzymes and crystal materials.
The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics.
arXiv Detail & Related papers (2024-04-22T16:55:44Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Differentiable modeling to unify machine learning and physical models
and advance Geosciences [38.92849886903847]
We outline the concepts, applicability, and significance of differentiable geoscientific modeling (DG)
"Differentiable" refers to accurately and efficiently calculating gradients with respect to model variables.
Preliminary evidence suggests DG offers better interpretability and causality than Machine Learning.
arXiv Detail & Related papers (2023-01-10T15:24:14Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.