ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation
- URL: http://arxiv.org/abs/2503.17671v1
- Date: Sat, 22 Mar 2025 06:48:50 GMT
- Title: ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation
- Authors: Oucheng Huang, Yuhang Ma, Zeng Zhao, Mingrui Wu, Jiayi Ji, Rongsheng Zhang, Zhipeng Hu, Xiaoshuai Sun, Rongrong Ji,
- Abstract summary: We introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI based on task descriptions automatically.<n> ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent.<n> FlowDataset is a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench is a benchmark for evaluating workflow generation systems.
- Score: 71.31634636156384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ComfyUI provides a widely-adopted, workflow-based interface that enables users to customize various image generation tasks through an intuitive node-based architecture. However, the intricate connections between nodes and diverse modules often present a steep learning curve for users. In this paper, we introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI workflows based on task descriptions automatically. ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent. The core innovation of ComfyGPT lies in two key aspects. First, it focuses on generating individual node links rather than entire workflows, significantly improving generation precision. Second, we proposed FlowAgent, a LLM-based workflow generation agent that uses both supervised fine-tuning (SFT) and reinforcement learning (RL) to improve workflow generation accuracy. Moreover, we introduce FlowDataset, a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench, a comprehensive benchmark for evaluating workflow generation systems. We also propose four novel evaluation metrics: Format Validation (FV), Pass Accuracy (PA), Pass Instruct Alignment (PIA), and Pass Node Diversity (PND). Experimental results demonstrate that ComfyGPT significantly outperforms existing LLM-based methods in workflow generation.
Related papers
- Opus: A Large Work Model for Complex Workflow Generation [0.0]
Opus is a framework for generating and optimizing tasks tailored to complex Business Process Outsourcing (BPO) use cases.
Our approach generates executables from Intention, defined as the alignment of Client Input, Client Output and Process Directed Context.
arXiv Detail & Related papers (2024-11-30T20:00:41Z) - WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
We presentLLM, a data-centric framework to enhance the capability of large language models in workflow orchestration.
It first constructs a large-scale fine-tuningBench with 106,763 samples, covering 1,503 APIs from 83 applications across 28 categories.
LlamaLlama demonstrates a strong capacity to orchestrate complex APIs, while also achieving notable generalization performance.
arXiv Detail & Related papers (2024-11-08T09:58:02Z) - AFlow: Automating Agentic Workflow Generation [36.61172223528231]
Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains.<n>We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search.<n> Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines.
arXiv Detail & Related papers (2024-10-14T17:40:40Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.<n>We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.<n>We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - ComfyGen: Prompt-Adaptive Workflows for Text-to-Image Generation [87.39861573270173]
We introduce the novel task of prompt-adaptive workflow generation, where the goal is to automatically tailor a workflow to each user prompt.
We propose two LLM-based approaches to tackle this task: a tuning-based method that learns from user-preference data, and a training-free method that uses the LLM to select existing flows.
Our work shows that prompt-dependent flow prediction offers a new pathway to improving text-to-image generation quality, complementing existing research directions in the field.
arXiv Detail & Related papers (2024-10-02T16:43:24Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
This work attempts to study using LLM-based agents to design collaborative AI systems autonomously.<n>Based on ComfyBench, we develop ComfyAgent, a framework that empowers agents to autonomously design collaborative AI systems by generating.<n>While ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15% of creative tasks.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGen is a code generation framework that emulates software process models based on multiple Large Language Model (LLM) agents.
We evaluate FlowGenScrum on four benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET.
arXiv Detail & Related papers (2024-03-23T14:04:48Z) - FlowMind: Automatic Workflow Generation with LLMs [12.848562107014093]
This paper introduces a novel approach, FlowMind, leveraging the capabilities of Large Language Models (LLMs)
We propose a generic prompt recipe for a lecture that helps ground LLM reasoning with reliable Application Programming Interfaces (APIs)
We also introduce NCEN-QA, a new dataset in finance for benchmarking question-answering tasks from N-CEN reports on funds.
arXiv Detail & Related papers (2024-03-17T00:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.