FlowMind: Automatic Workflow Generation with LLMs
- URL: http://arxiv.org/abs/2404.13050v1
- Date: Sun, 17 Mar 2024 00:36:37 GMT
- Title: FlowMind: Automatic Workflow Generation with LLMs
- Authors: Zhen Zeng, William Watson, Nicole Cho, Saba Rahimi, Shayleen Reynolds, Tucker Balch, Manuela Veloso,
- Abstract summary: This paper introduces a novel approach, FlowMind, leveraging the capabilities of Large Language Models (LLMs)
We propose a generic prompt recipe for a lecture that helps ground LLM reasoning with reliable Application Programming Interfaces (APIs)
We also introduce NCEN-QA, a new dataset in finance for benchmarking question-answering tasks from N-CEN reports on funds.
- Score: 12.848562107014093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapidly evolving field of Robotic Process Automation (RPA) has made significant strides in automating repetitive processes, yet its effectiveness diminishes in scenarios requiring spontaneous or unpredictable tasks demanded by users. This paper introduces a novel approach, FlowMind, leveraging the capabilities of Large Language Models (LLMs) such as Generative Pretrained Transformer (GPT), to address this limitation and create an automatic workflow generation system. In FlowMind, we propose a generic prompt recipe for a lecture that helps ground LLM reasoning with reliable Application Programming Interfaces (APIs). With this, FlowMind not only mitigates the common issue of hallucinations in LLMs, but also eliminates direct interaction between LLMs and proprietary data or code, thus ensuring the integrity and confidentiality of information - a cornerstone in financial services. FlowMind further simplifies user interaction by presenting high-level descriptions of auto-generated workflows, enabling users to inspect and provide feedback effectively. We also introduce NCEN-QA, a new dataset in finance for benchmarking question-answering tasks from N-CEN reports on funds. We used NCEN-QA to evaluate the performance of workflows generated by FlowMind against baseline and ablation variants of FlowMind. We demonstrate the success of FlowMind, the importance of each component in the proposed lecture recipe, and the effectiveness of user interaction and feedback in FlowMind.
Related papers
- Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey [3.340984908213717]
Building effective machine learning (ML) to address complex tasks is a primary focus of the Automatic ML (AutoML) community.
Recently, the integration of Large Language Models (LLMs) into ML has shown great potential for automating and enhancing various stages of the ML pipeline.
arXiv Detail & Related papers (2024-11-11T21:54:26Z) - WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
We presentLLM, a data-centric framework to enhance the capability of large language models in workflow orchestration.
It first constructs a large-scale fine-tuningBench with 106,763 samples, covering 1,503 APIs from 83 applications across 28 categories.
LlamaLlama demonstrates a strong capacity to orchestrate complex APIs, while also achieving notable generalization performance.
arXiv Detail & Related papers (2024-11-08T09:58:02Z) - AFlow: Automating Agentic Workflow Generation [36.61172223528231]
Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains.
We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search.
Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines.
arXiv Detail & Related papers (2024-10-14T17:40:40Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - CaLMFlow: Volterra Flow Matching using Causal Language Models [14.035963716966787]
CaLMFlow is a framework that casts flow matching as a Volterra integral equation (VIE)
Our method implements tokenization across space and time, thereby solving a VIE over these domains.
We demonstrate CaLMFlow's effectiveness on synthetic and real-world data, including single-cell perturbation response prediction.
arXiv Detail & Related papers (2024-10-03T05:07:41Z) - ComfyGen: Prompt-Adaptive Workflows for Text-to-Image Generation [87.39861573270173]
We introduce the novel task of prompt-adaptive workflow generation, where the goal is to automatically tailor a workflow to each user prompt.
We propose two LLM-based approaches to tackle this task: a tuning-based method that learns from user-preference data, and a training-free method that uses the LLM to select existing flows.
Our work shows that prompt-dependent flow prediction offers a new pathway to improving text-to-image generation quality, complementing existing research directions in the field.
arXiv Detail & Related papers (2024-10-02T16:43:24Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - AutoFlow: Automated Workflow Generation for Large Language Model Agents [39.72700864347576]
Large Language Models (LLMs) have shown significant progress in understanding complex natural language.
To make sure LLM Agents follow an effective and reliable procedure to solve the given task, manually designed are usually used.
We propose AutoFlow, a framework designed to automatically generate for agents to solve complex tasks.
arXiv Detail & Related papers (2024-07-01T21:05:02Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
We propose a GMFlow framework for learning optical flow estimation.
It consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation.
Our new framework outperforms 32-iteration RAFT's performance on the challenging Sintel benchmark.
arXiv Detail & Related papers (2021-11-26T18:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.