HiLoTs: High-Low Temporal Sensitive Representation Learning for Semi-Supervised LiDAR Segmentation in Autonomous Driving
- URL: http://arxiv.org/abs/2503.17752v1
- Date: Sat, 22 Mar 2025 12:29:15 GMT
- Title: HiLoTs: High-Low Temporal Sensitive Representation Learning for Semi-Supervised LiDAR Segmentation in Autonomous Driving
- Authors: R. D. Lin, Pengcheng Weng, Yinqiao Wang, Han Ding, Jinsong Han, Fei Wang,
- Abstract summary: We propose HiLoTs, which learns high-temporal sensitivity and low-temporal sensitivity representations from continuous LiDAR frames.<n>Results show that our proposed HiLoTs outperforms state-of-the-art semi-supervised methods.
- Score: 9.941013804343477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR point cloud semantic segmentation plays a crucial role in autonomous driving. In recent years, semi-supervised methods have gained popularity due to their significant reduction in annotation labor and time costs. Current semi-supervised methods typically focus on point cloud spatial distribution or consider short-term temporal representations, e.g., only two adjacent frames, often overlooking the rich long-term temporal properties inherent in autonomous driving scenarios. In driving experience, we observe that nearby objects, such as roads and vehicles, remain stable while driving, whereas distant objects exhibit greater variability in category and shape. This natural phenomenon is also captured by LiDAR, which reflects lower temporal sensitivity for nearby objects and higher sensitivity for distant ones. To leverage these characteristics, we propose HiLoTs, which learns high-temporal sensitivity and low-temporal sensitivity representations from continuous LiDAR frames. These representations are further enhanced and fused using a cross-attention mechanism. Additionally, we employ a teacher-student framework to align the representations learned by the labeled and unlabeled branches, effectively utilizing the large amounts of unlabeled data. Experimental results on the SemanticKITTI and nuScenes datasets demonstrate that our proposed HiLoTs outperforms state-of-the-art semi-supervised methods, and achieves performance close to LiDAR+Camera multimodal approaches. Code is available on https://github.com/rdlin118/HiLoTs
Related papers
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++ is a novel framework that integrates pretraining and downstream tasks using consecutive camera pairs.
We show that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions.
With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving.
arXiv Detail & Related papers (2025-03-25T17:59:57Z) - TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation [80.13343299606146]
We propose a Temporal LiDAR Aggregation and Distillation (TLAD) algorithm, which leverages historical priors to assign different aggregation steps for different classes.
To make full use of temporal images, we design a Temporal Image Aggregation and Fusion (TIAF) module, which can greatly expand the camera FOV.
We also develop a Static-Moving Switch Augmentation (SMSA) algorithm, which utilizes sufficient temporal information to enable objects to switch their motion states freely.
arXiv Detail & Related papers (2024-07-13T03:00:16Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
Class-agnostic motion prediction methods directly predict the motion of the entire point cloud.
While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming.
We introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively.
arXiv Detail & Related papers (2024-03-20T02:58:45Z) - Self-Supervised Multi-Object Tracking For Autonomous Driving From
Consistency Across Timescales [53.55369862746357]
Self-supervised multi-object trackers have tremendous potential as they enable learning from raw domain-specific data.
However, their re-identification accuracy still falls short compared to their supervised counterparts.
We propose a training objective that enables self-supervised learning of re-identification features from multiple sequential frames.
arXiv Detail & Related papers (2023-04-25T20:47:29Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
An autonomous driving system should effectively use the information collected from the various sensors in order to form an abstract description of the world.
Deep learning models, such as autoencoders, can be used for that purpose, as they can learn compact latent representations from a stream of incoming data.
This work proposes CARNet, a Combined dynAmic autoencodeR NETwork architecture that utilizes an autoencoder combined with a recurrent neural network to learn the current latent representation.
arXiv Detail & Related papers (2022-05-18T04:15:42Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream.
The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations.
Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream.
arXiv Detail & Related papers (2022-04-26T09:52:31Z) - NEAT: Neural Attention Fields for End-to-End Autonomous Driving [59.60483620730437]
We present NEural ATtention fields (NEAT), a novel representation that enables efficient reasoning for imitation learning models.
NEAT is a continuous function which maps locations in Bird's Eye View (BEV) scene coordinates to waypoints and semantics.
In a new evaluation setting involving adverse environmental conditions and challenging scenarios, NEAT outperforms several strong baselines and achieves driving scores on par with the privileged CARLA expert.
arXiv Detail & Related papers (2021-09-09T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.