論文の概要: CODA: Repurposing Continuous VAEs for Discrete Tokenization
- arxiv url: http://arxiv.org/abs/2503.17760v1
- Date: Sat, 22 Mar 2025 12:59:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:49.604861
- Title: CODA: Repurposing Continuous VAEs for Discrete Tokenization
- Title(参考訳): CODA:離散化のための連続型VAEの買い戻し
- Authors: Zeyu Liu, Zanlin Ni, Yeguo Hua, Xin Deng, Xiao Ma, Cheng Zhong, Gao Huang,
- Abstract要約: textbfCODA(textbfCOntinuous-to-textbfDiscrete textbfAdaptation)は、圧縮と離散化を分離するフレームワークである。
提案手法は,ImageNet 256$times$256ベンチマークにおいて,$mathbf0.43$と$mathbf1.34$を8倍,$16倍の圧縮で,100%のコードブック利用と注目すべき再構成FID(rFID)を実現している。
- 参考スコア(独自算出の注目度): 52.58960429582813
- License:
- Abstract: Discrete visual tokenizers transform images into a sequence of tokens, enabling token-based visual generation akin to language models. However, this process is inherently challenging, as it requires both compressing visual signals into a compact representation and discretizing them into a fixed set of codes. Traditional discrete tokenizers typically learn the two tasks jointly, often leading to unstable training, low codebook utilization, and limited reconstruction quality. In this paper, we introduce \textbf{CODA}(\textbf{CO}ntinuous-to-\textbf{D}iscrete \textbf{A}daptation), a framework that decouples compression and discretization. Instead of training discrete tokenizers from scratch, CODA adapts off-the-shelf continuous VAEs -- already optimized for perceptual compression -- into discrete tokenizers via a carefully designed discretization process. By primarily focusing on discretization, CODA ensures stable and efficient training while retaining the strong visual fidelity of continuous VAEs. Empirically, with $\mathbf{6 \times}$ less training budget than standard VQGAN, our approach achieves a remarkable codebook utilization of 100% and notable reconstruction FID (rFID) of $\mathbf{0.43}$ and $\mathbf{1.34}$ for $8 \times$ and $16 \times$ compression on ImageNet 256$\times$ 256 benchmark.
- Abstract(参考訳): 離散的なビジュアルトークン化器は、画像をトークンのシーケンスに変換し、言語モデルに似たトークンベースのビジュアル生成を可能にする。
しかし、このプロセスは、視覚信号をコンパクトな表現に圧縮し、それらを固定されたコードに識別することの両方を必要とするため、本質的に困難である。
従来の離散トークン化器は2つのタスクを共同で学習し、しばしば不安定なトレーニング、コードブックの利用率の低下、限られた再構築品質につながる。
本稿では,圧縮と離散化を分離するフレームワークである \textbf{CODA}(\textbf{CO}ntinuous-to-\textbf{D}iscrete \textbf{A}daptation を紹介する。
CODAは、スクラッチから個別のトークンライザをトレーニングする代わりに、既製の継続的なVAE(知覚圧縮に最適化済み)を、慎重に設計された離散化プロセスを通じて個別のトークンライザに適応させる。
主に離散化に焦点を当てることで、CODAは継続的なVAEの強い視覚的忠実さを維持しながら、安定的で効率的なトレーニングを確実にする。
実証的に、$\mathbf{6 \times}$ トレーニング予算が標準 VQGAN よりも少ないため、我々のアプローチは、 ImageNet 256$\times$ 256ベンチマークで、$\mathbf{0.43}$ および $\mathbf{1.34}$ に対して$ 8 \times$ および $116 \times$ 圧縮に対して、100%のコードブック利用と注目すべき再構成 FID (rFID) の顕著なコードブック利用を実現している。
関連論文リスト
- GaussianToken: An Effective Image Tokenizer with 2D Gaussian Splatting [64.84383010238908]
本稿では,2次元ガウススプラッティングを解法とする効果的な画像トークン化手法を提案する。
一般に、我々のフレームワークは、2次元ガウス分布の局所的な影響を離散空間に統合する。
CIFAR, Mini-Net, ImageNet-1K 上での競合的再構成性能は,我々のフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2025-01-26T17:56:11Z) - SweetTok: Semantic-Aware Spatial-Temporal Tokenizer for Compact Video Discretization [20.109136454526233]
本稿では,現在のビデオトークン化手法の限界を克服する新しいビデオトークン化ツールであるSweetTokを提案する。
SweetTokは、textbfDecoupled textbfAutotextbfEncoder (DQAE)を介して、異なる空間的および時間的クエリを通して視覚入力を圧縮する
SweetTok は UCF-101 データセット上で textbf42.8% w.r.t rFVD でビデオ再構成結果を大幅に改善することを示した。
論文 参考訳(メタデータ) (2024-12-11T13:48:06Z) - Scalable Image Tokenization with Index Backpropagation Quantization [74.15447383432262]
インデックスバックプロパゲーション量子化(IBQ)は、すべてのコードブック埋め込みとビジュアルエンコーダの共同最適化のための新しいVQ手法である。
IBQは、ビジュアルトークンのスケーラブルなトレーニングを可能にし、初めて、高次元(256ドル)で高利用率の大規模コードブックを実現する。
論文 参考訳(メタデータ) (2024-12-03T18:59:10Z) - Factorized Visual Tokenization and Generation [37.56136469262736]
本稿では,大規模なコードブックを複数の独立したサブコードブックに分解することで,VQベースのトークン化を活性化する新しい手法であるFacterized Quantization(FQ)を紹介する。
このファクター化は、大規模なコードブックのルックアップの複雑さを低減し、より効率的でスケーラブルなビジュアルトークン化を可能にします。
実験により,提案したFQGANモデルにより,視覚トークンの再現品質が大幅に向上し,最先端の性能が達成された。
論文 参考訳(メタデータ) (2024-11-25T18:59:53Z) - Continuous Speculative Decoding for Autoregressive Image Generation [33.05392461723613]
連続評価された自己回帰(AR)画像生成モデルは、離散的傾向よりも顕著な優位性を示している。
投機的復号化は大規模言語モデル(LLM)の加速に有効であることが証明された
この研究は離散トークンから連続空間への投機的復号アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2024-11-18T09:19:15Z) - Token Compensator: Altering Inference Cost of Vision Transformer without Re-Tuning [63.43972993473501]
視覚変換器(ViT)の訓練と推論を高速化するトークン圧縮
しかし、下流タスクに適用した場合、圧縮度はトレーニングと推論の段階で不一致となる。
本稿では,2段階間の圧縮度を分離するモデル演算フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T10:36:43Z) - Token-level Correlation-guided Compression for Efficient Multimodal Document Understanding [54.532578213126065]
ほとんどの文書理解手法は、サブイメージ内の全てのトークンを保存し、それらを等しく扱う。
これにより、異なる情報性が無視され、画像トークンの数が大幅に増加する。
トークン処理を最適化するためのパラメータフリーかつプラグアンドプレイ手法であるトークンレベルの相関誘導圧縮を提案する。
論文 参考訳(メタデータ) (2024-07-19T16:11:15Z) - LoCoCo: Dropping In Convolutions for Long Context Compression [77.26610232994508]
本稿では,Long Context Compression(LoCoCo)のための新しいアプローチであるDropping In Convolutionsを提案する。
LoCoCoは、固定サイズキーバリュー(KV)キャッシュのみを使用し、推論と微調整の両方のステージで効率を向上させることができる。
論文 参考訳(メタデータ) (2024-06-08T01:35:11Z) - SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA [0.6770292596301478]
そこで本研究では,ISTA (SC-VAE) を用いたスパース符号化に基づくVAEを新たに導入し,スパース符号化を可変オートエンコーダフレームワークに統合する。
2つの画像データセットに対する実験により、我々のモデルは、最先端の手法と比較して、画像再構成結果の改善を実現していることが示された。
論文 参考訳(メタデータ) (2023-03-29T13:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。