Understanding the Effects of RLHF on the Quality and Detectability of LLM-Generated Texts
- URL: http://arxiv.org/abs/2503.17965v1
- Date: Sun, 23 Mar 2025 07:03:10 GMT
- Title: Understanding the Effects of RLHF on the Quality and Detectability of LLM-Generated Texts
- Authors: Beining Xu, Arkaitz Zubiaga,
- Abstract summary: We study how further editing with Reinforcement Learning from Human Feedback affects the quality of generated texts.<n>We find that RLHF produces more detectable, lengthy, and repetitive outputs.<n>Training-based detectors are vulnerable to short texts and to texts that incorporate code, whereas zero-shot detectors exhibit greater robustness.
- Score: 7.242609314791262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated exceptional performance on a range of downstream NLP tasks by generating text that closely resembles human writing. However, the ease of achieving this similarity raises concerns from potential malicious uses at scale by bad actors, as LLM-generated text becomes increasingly difficult to discern from human text. Although detection methods have been developed to address this issue, bad actors can further manipulate LLM-generated texts to make them less detectable. In this work, we study how further editing texts with Reinforcement Learning from Human Feedback (RLHF), which aligns model outputs with human preferences, affects (a) the quality of generated texts for two tasks, and (b) the performance of LLM-generated text detectors, looking at both training-based and zero-shot detection methods. Although RLHF improves the quality of LLM-generated texts, we find that it also tends to produce more detectable, lengthy, and repetitive outputs. Additionally, we observe that training-based detectors are vulnerable to short texts and to texts that incorporate code, whereas zero-shot detectors exhibit greater robustness.
Related papers
- "I know myself better, but not really greatly": Using LLMs to Detect and Explain LLM-Generated Texts [10.454446545249096]
Large language models (LLMs) have demonstrated impressive capabilities in generating human-like texts.<n>This paper explores the detection and explanation capabilities of LLM-based detectors of human-generated texts.
arXiv Detail & Related papers (2025-02-18T11:00:28Z) - Understanding the Effects of Human-written Paraphrases in LLM-generated Text Detection [7.242609314791262]
Human & LLM Paraphrase Collection (HLPC) is a first-of-its-kind dataset that incorporates human-written texts and paraphrases.
We perform classification experiments that incorporate human-written paraphrases, watermarked and non-watermarked LLM-generated documents from GPT and OPT, and LLM-generated paraphrases from DIPPER and BART.
Results show that the inclusion of human-written paraphrases has a significant impact of LLM-generated detector performance, promoting TPR@1%FPR with a possible trade-off of AUROC and accuracy.
arXiv Detail & Related papers (2024-11-06T10:06:21Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
In this work, we investigate the task of generated text detection by proposing the GigaCheck.
Our research explores two approaches: (i) distinguishing human-written texts from LLM-generated ones, and (ii) detecting LLM-generated intervals in Human-Machine collaborative texts.
Specifically, we use a fine-tuned general-purpose LLM in conjunction with a DETR-like detection model, adapted from computer vision, to localize AI-generated intervals within text.
arXiv Detail & Related papers (2024-10-31T08:30:55Z) - Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore [51.65730053591696]
We propose a simple yet effective black-box zero-shot detection approach based on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts.<n> Experimental results show that our method outperforms current state-of-the-art (SOTA) zero-shot and supervised methods.
arXiv Detail & Related papers (2024-05-07T12:57:01Z) - LLM-Detector: Improving AI-Generated Chinese Text Detection with
Open-Source LLM Instruction Tuning [4.328134379418151]
Existing AI-generated text detection models are prone to in-domain over-fitting.
We propose LLM-Detector, a novel method for both document-level and sentence-level text detection.
arXiv Detail & Related papers (2024-02-02T05:54:12Z) - A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions [39.36381851190369]
There is an imperative need to develop detectors that can detect LLM-generated text.
This is crucial to mitigate potential misuse of LLMs and safeguard realms like artistic expression and social networks from harmful influence of LLM-generated content.
The detector techniques have witnessed notable advancements recently, propelled by innovations in watermarking techniques, statistics-based detectors, neural-base detectors, and human-assisted methods.
arXiv Detail & Related papers (2023-10-23T09:01:13Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z) - The Science of Detecting LLM-Generated Texts [47.49470179549773]
The emergence of large language models (LLMs) has resulted in the production of texts that are almost indistinguishable from texts written by humans.
This has sparked concerns about the potential misuse of such texts, such as spreading misinformation and causing disruptions in the education system.
This survey aims to provide an overview of existing LLM-generated text detection techniques and enhance the control and regulation of language generation models.
arXiv Detail & Related papers (2023-02-04T04:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.