Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities
- URL: http://arxiv.org/abs/2503.17979v1
- Date: Sun, 23 Mar 2025 08:18:51 GMT
- Title: Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities
- Authors: Weixiang Zhao, Xingyu Sui, Jiahe Guo, Yulin Hu, Yang Deng, Yanyan Zhao, Bing Qin, Wanxiang Che, Tat-Seng Chua, Ting Liu,
- Abstract summary: Recent advancements in Large Reasoning Models (LRMs) have demonstrated remarkable performance in specialized reasoning tasks.<n>We show that acquiring deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs.<n>We demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks.
- Score: 101.77467538102924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Reasoning Models (LRMs), such as OpenAI's o1/o3 and DeepSeek-R1, have demonstrated remarkable performance in specialized reasoning tasks through human-like deliberative thinking and long chain-of-thought reasoning. However, our systematic evaluation across various model families (DeepSeek, Qwen, and LLaMA) and scales (7B to 671B) reveals that acquiring these deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs, including notable declines in helpfulness and harmlessness, alongside substantially increased inference costs. Importantly, we demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks. Our empirical insights underline the critical need for developing more versatile LRMs capable of dynamically allocating inference-time compute according to specific task characteristics.
Related papers
- S1-Bench: A Simple Benchmark for Evaluating System 1 Thinking Capability of Large Reasoning Models [13.083179473480705]
Large Reasoning Models' (LRMs) reliance on deep analytical thinking may limit their system 1 thinking capabilities.
We introduce S1-Bench, a novel benchmark designed to evaluate LRMs' performance on simple tasks.
arXiv Detail & Related papers (2025-04-14T16:13:23Z) - Efficient Inference for Large Reasoning Models: A Survey [42.61170621552432]
Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason.
However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time.
This survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality.
arXiv Detail & Related papers (2025-03-29T13:27:46Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.
We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.
Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond [88.5807076505261]
Large Reasoning Models (LRMs) have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference.
A growing concern lies in their tendency to produce excessively long reasoning traces.
This inefficiency introduces significant challenges for training, inference, and real-world deployment.
arXiv Detail & Related papers (2025-03-27T15:36:30Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - The Danger of Overthinking: Examining the Reasoning-Action Dilemma in Agentic Tasks [96.27754404942364]
Large Reasoning Models (LRMs) represent a breakthrough in AI problem-solving capabilities, but their effectiveness in interactive environments can be limited.<n>This paper introduces and analyzes overthinking in LRMs.<n>We observe three recurring patterns: Analysis Paralysis, Rogue Actions, and Premature Disengagement.
arXiv Detail & Related papers (2025-02-12T09:23:26Z) - Reinforcing Thinking through Reasoning-Enhanced Reward Models [6.636512424910708]
Large Language Models (LLMs) exhibit great potential in complex multi-step reasoning through inference-time thinking.<n>LLMs struggle with deciding when to stop thinking due to limited self-awareness about their knowledge boundaries.<n>This work addresses these challenges by distilling the LLM's own reasoning processes into synthetic behavioral data.
arXiv Detail & Related papers (2024-12-31T04:50:15Z) - Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic [48.94340387130627]
Critic-CoT is a framework that pushes LLMs toward System-2-like critic capability.
CoT reasoning paradigm and the automatic construction of distant-supervision data without human annotation.
Experiments on GSM8K and MATH demonstrate that our enhanced model significantly boosts task-solving performance.
arXiv Detail & Related papers (2024-08-29T08:02:09Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning
in Language Models [28.712359821231182]
Large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking.
The transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation.
This study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning.
arXiv Detail & Related papers (2023-10-25T08:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.