Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
- URL: http://arxiv.org/abs/2408.16326v2
- Date: Thu, 10 Oct 2024 06:42:16 GMT
- Title: Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic
- Authors: Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji, Hongyu Lin, Yaojie Lu, Xianpei Han, Debing Zhang, Le Sun,
- Abstract summary: Critic-CoT is a framework that pushes LLMs toward System-2-like critic capability.
CoT reasoning paradigm and the automatic construction of distant-supervision data without human annotation.
Experiments on GSM8K and MATH demonstrate that our enhanced model significantly boosts task-solving performance.
- Score: 48.94340387130627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-critic has become a crucial mechanism for enhancing the reasoning performance of LLMs. However, current approaches mainly involve basic prompts for intuitive instance-level feedback, which resembles System-1 processes and limits the reasoning capabilities. Moreover, there is a lack of in-depth investigations into the relationship between LLM's ability to criticize and its task-solving performance. To address these issues, we propose Critic-CoT, a novel framework that pushes LLMs toward System-2-like critic capability. Through a step-wise CoT reasoning paradigm and the automatic construction of distant-supervision data without human annotation, Critic-CoT enables LLMs to engage in slow, analytic self-critique and refinement, thereby improving their reasoning abilities. Experiments on GSM8K and MATH demonstrate that our enhanced model significantly boosts task-solving performance by filtering out invalid solutions or iterative refinement. Furthermore, we investigate the intrinsic correlation between critique and task-solving abilities within LLMs, discovering that these abilities can mutually reinforce each other rather than conflict.
Related papers
- DeepCritic: Deliberate Critique with Large Language Models [77.5516314477878]
We focus on studying and enhancing the math critique ability of Large Language Models (LLMs)
Our developed critique model built on Qwen2.5-7B-Instruct significantly outperforms existing LLM critics on various error identification benchmarks.
arXiv Detail & Related papers (2025-05-01T17:03:17Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
Recent advancements in Large Reasoning Models (LRMs) have demonstrated remarkable performance in specialized reasoning tasks.
We show that acquiring deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs.
We demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks.
arXiv Detail & Related papers (2025-03-23T08:18:51Z) - RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques [59.861013614500024]
We introduce a new benchmark designed to assess the critique capabilities of Large Language Models (LLMs)
Unlike existing benchmarks, which typically function in an open-loop fashion, our approach employs a closed-loop methodology that evaluates the quality of corrections generated from critiques.
arXiv Detail & Related papers (2025-01-24T13:48:10Z) - Enabling Scalable Oversight via Self-Evolving Critic [59.861013614500024]
SCRIT (Self-evolving CRITic) is a framework that enables genuine self-evolution of critique abilities.
It self-improves by training on synthetic data, generated by a contrastive-based self-critic.
It achieves up to a 10.3% improvement on critique-correction and error identification benchmarks.
arXiv Detail & Related papers (2025-01-10T05:51:52Z) - Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning [46.411313304605564]
Critic-V is a framework inspired by the Actor-Critic paradigm to boost the reasoning capability of vision-language models (VLMs)
The Reasoner generates reasoning paths based on visual and textual inputs, and the Critic provides constructive critique to refine these paths.
evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks.
arXiv Detail & Related papers (2024-11-27T10:28:57Z) - Training Language Models to Critique With Multi-agent Feedback [102.42751835338233]
MultiCritique pipeline improves critique ability of LLMs by utilizing multi-agent feedback.
pipeline aggregates high-quality critiques from multiple agents instead of a single model.
Our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models.
arXiv Detail & Related papers (2024-10-20T04:57:45Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare.
It is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior.
arXiv Detail & Related papers (2024-06-15T13:16:44Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - CriticBench: Benchmarking LLMs for Critique-Correct Reasoning [26.45110574463893]
CriticBench is a benchmark designed to assess Large Language Models' abilities to critique and rectify their reasoning.
We evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning.
arXiv Detail & Related papers (2024-02-22T18:59:02Z) - Critique Ability of Large Language Models [38.34144195927209]
This study explores the ability of large language models (LLMs) to deliver accurate critiques across various tasks.
We develop a benchmark called CriticBench, which comprises 3K high-quality natural language queries and corresponding model responses.
arXiv Detail & Related papers (2023-10-07T14:12:15Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.