Surrogate Learning in Meta-Black-Box Optimization: A Preliminary Study
- URL: http://arxiv.org/abs/2503.18060v1
- Date: Sun, 23 Mar 2025 13:07:57 GMT
- Title: Surrogate Learning in Meta-Black-Box Optimization: A Preliminary Study
- Authors: Zeyuan Ma, Zhiyang Huang, Jiacheng Chen, Zhiguang Cao, Yue-Jiao Gong,
- Abstract summary: We propose a novel MetaBBO framework which combines surrogate learning process and reinforcement learning-aided Differential Evolution algorithm.<n>Surr-RLDE comprises two learning stages: surrogate learning and policy learning.<n>We show that Surr-RLDE not only shows competitive performance to recent baselines, but also shows compelling generalization for higher-dimensional problems.
- Score: 23.31374095085009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Meta-Black-Box Optimization (MetaBBO) approaches have shown possibility of enhancing the optimization performance through learning meta-level policies to dynamically configure low-level optimizers. However, existing MetaBBO approaches potentially consume massive function evaluations to train their meta-level policies. Inspired by the recent trend of using surrogate models for cost-friendly evaluation of expensive optimization problems, in this paper, we propose a novel MetaBBO framework which combines surrogate learning process and reinforcement learning-aided Differential Evolution algorithm, namely Surr-RLDE, to address the intensive function evaluation in MetaBBO. Surr-RLDE comprises two learning stages: surrogate learning and policy learning. In surrogate learning, we train a Kolmogorov-Arnold Networks (KAN) with a novel relative-order-aware loss to accurately approximate the objective functions of the problem instances used for subsequent policy learning. In policy learning, we employ reinforcement learning (RL) to dynamically configure the mutation operator in DE. The learned surrogate model is integrated into the training of the RL-based policy to substitute for the original objective function, which effectively reduces consumed evaluations during policy learning. Extensive benchmark results demonstrate that Surr-RLDE not only shows competitive performance to recent baselines, but also shows compelling generalization for higher-dimensional problems. Further ablation studies underscore the effectiveness of each technical components in Surr-RLDE. We open-source Surr-RLDE at https://github.com/GMC-DRL/Surr-RLDE.
Related papers
- Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning [7.765689048808507]
This paper introduces a novel MetaBBO method that supports automated feature learning during the meta-learning process.<n>We design an attention-based neural network with mantissa-exponent based embedding to transform the solution populations.<n>We also incorporate a comprehensive algorithm configuration space including diverse DE operators into a reinforcement learning-aided DAC paradigm.
arXiv Detail & Related papers (2025-03-23T13:07:57Z) - Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone [72.17534881026995]
We develop an offline and online fine-tuning approach called policy-agnostic RL (PA-RL)
We show the first result that successfully fine-tunes OpenVLA, a 7B generalist robot policy, autonomously with Cal-QL, an online RL fine-tuning algorithm.
arXiv Detail & Related papers (2024-12-09T17:28:03Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization [34.24884427152513]
We propose a general meta ERL framework via bilevel optimization (BiERL)
We design an elegant meta-level architecture that embeds the inner-level's evolving experience into an informative population representation.
We perform extensive experiments in MuJoCo and Box2D tasks to verify that as a general framework, BiERL outperforms various baselines and consistently improves the learning performance for a diversity of ERL algorithms.
arXiv Detail & Related papers (2023-08-01T09:31:51Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - Model-Based Offline Meta-Reinforcement Learning with Regularization [63.35040401948943]
offline Meta-RL is emerging as a promising approach to address these challenges.
MerPO learns a meta-model for efficient task structure inference and an informative meta-policy.
We show that MerPO offers guaranteed improvement over both the behavior policy and the meta-policy.
arXiv Detail & Related papers (2022-02-07T04:15:20Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
In this paper, we introduce a meta-learning scheme that shifts the objective of learning to solve a task into the objective of learning to learn to solve a task (or a set of tasks)
Our model, named REIN-2, is a meta-learning scheme formulated within the RL framework, the goal of which is to develop a meta-RL agent that learns how to produce other RL agents.
Compared to traditional state-of-the-art Deep RL algorithms, experimental results show remarkable performance of our model in popular OpenAI Gym environments.
arXiv Detail & Related papers (2021-10-11T10:13:49Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z) - Curriculum in Gradient-Based Meta-Reinforcement Learning [10.447238563837173]
We show that gradient-based meta-learners are sensitive to task distributions.
With the wrong curriculum, agents suffer the effects of meta-overfitting, shallow adaptation, and adaptation instability.
arXiv Detail & Related papers (2020-02-19T01:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.