BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization
- URL: http://arxiv.org/abs/2308.01207v1
- Date: Tue, 1 Aug 2023 09:31:51 GMT
- Title: BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization
- Authors: Junyi Wang, Yuanyang Zhu, Zhi Wang, Yan Zheng, Jianye Hao, Chunlin
Chen
- Abstract summary: We propose a general meta ERL framework via bilevel optimization (BiERL)
We design an elegant meta-level architecture that embeds the inner-level's evolving experience into an informative population representation.
We perform extensive experiments in MuJoCo and Box2D tasks to verify that as a general framework, BiERL outperforms various baselines and consistently improves the learning performance for a diversity of ERL algorithms.
- Score: 34.24884427152513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary reinforcement learning (ERL) algorithms recently raise attention
in tackling complex reinforcement learning (RL) problems due to high
parallelism, while they are prone to insufficient exploration or model collapse
without carefully tuning hyperparameters (aka meta-parameters). In the paper,
we propose a general meta ERL framework via bilevel optimization (BiERL) to
jointly update hyperparameters in parallel to training the ERL model within a
single agent, which relieves the need for prior domain knowledge or costly
optimization procedure before model deployment. We design an elegant meta-level
architecture that embeds the inner-level's evolving experience into an
informative population representation and introduce a simple and feasible
evaluation of the meta-level fitness function to facilitate learning
efficiency. We perform extensive experiments in MuJoCo and Box2D tasks to
verify that as a general framework, BiERL outperforms various baselines and
consistently improves the learning performance for a diversity of ERL
algorithms.
Related papers
- MAMBA: an Effective World Model Approach for Meta-Reinforcement Learning [18.82398325614491]
We propose a new model-based approach to meta-RL, based on elements from existing state-of-the-art model-based and meta-RL methods.
We demonstrate the effectiveness of our approach on common meta-RL benchmark domains, attaining greater return with better sample efficiency.
In addition, we validate our approach on a slate of more challenging, higher-dimensional domains, taking a step towards real-world generalizing agents.
arXiv Detail & Related papers (2024-03-14T20:40:36Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
This research presents a novel framework that harnesses the potential of Deep Reinforcement Learning (DRL)
The integration of our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a novel framework that efficiently uses RAY's resources to improve system adaptability and control.
arXiv Detail & Related papers (2024-02-24T23:25:35Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - PEAR: Primitive enabled Adaptive Relabeling for boosting Hierarchical Reinforcement Learning [25.84621883831624]
Hierarchical reinforcement learning has the potential to solve complex long horizon tasks using temporal abstraction and increased exploration.
We present primitive enabled adaptive relabeling (PEAR)
We first perform adaptive relabeling on a few expert demonstrations to generate efficient subgoal supervision.
We then jointly optimize HRL agents by employing reinforcement learning (RL) and imitation learning (IL)
arXiv Detail & Related papers (2023-06-10T09:41:30Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Optimization-Derived Learning with Essential Convergence Analysis of
Training and Hyper-training [52.39882976848064]
We design a Generalized Krasnoselskii-Mann (GKM) scheme based on fixed-point iterations as our fundamental ODL module.
Under the GKM scheme, a Bilevel Meta Optimization (BMO) algorithmic framework is constructed to solve the optimal training and hyper-training variables together.
arXiv Detail & Related papers (2022-06-16T01:50:25Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
In this paper, we introduce a meta-learning scheme that shifts the objective of learning to solve a task into the objective of learning to learn to solve a task (or a set of tasks)
Our model, named REIN-2, is a meta-learning scheme formulated within the RL framework, the goal of which is to develop a meta-RL agent that learns how to produce other RL agents.
Compared to traditional state-of-the-art Deep RL algorithms, experimental results show remarkable performance of our model in popular OpenAI Gym environments.
arXiv Detail & Related papers (2021-10-11T10:13:49Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.