Anomize: Better Open Vocabulary Video Anomaly Detection
- URL: http://arxiv.org/abs/2503.18094v1
- Date: Sun, 23 Mar 2025 14:49:32 GMT
- Title: Anomize: Better Open Vocabulary Video Anomaly Detection
- Authors: Fei Li, Wenxuan Liu, Jingjing Chen, Ruixu Zhang, Yuran Wang, Xian Zhong, Zheng Wang,
- Abstract summary: Open Vocabulary Video Anomaly Detection seeks to detect and classify both base and novel anomalies.<n>The first challenge is detection ambiguity, where the model struggles to assign accurate anomaly scores to unfamiliar anomalies.<n>The second challenge is categorization confusion, where novel anomalies are often misclassified as visually similar base instances.<n>We propose incorporating label relations to guide the encoding of new labels, thereby improving alignment between novel videos and their corresponding labels.
- Score: 38.36290705266484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open Vocabulary Video Anomaly Detection (OVVAD) seeks to detect and classify both base and novel anomalies. However, existing methods face two specific challenges related to novel anomalies. The first challenge is detection ambiguity, where the model struggles to assign accurate anomaly scores to unfamiliar anomalies. The second challenge is categorization confusion, where novel anomalies are often misclassified as visually similar base instances. To address these challenges, we explore supplementary information from multiple sources to mitigate detection ambiguity by leveraging multiple levels of visual data alongside matching textual information. Furthermore, we propose incorporating label relations to guide the encoding of new labels, thereby improving alignment between novel videos and their corresponding labels, which helps reduce categorization confusion. The resulting Anomize framework effectively tackles these issues, achieving superior performance on UCF-Crime and XD-Violence datasets, demonstrating its effectiveness in OVVAD.
Related papers
- Learn Suspected Anomalies from Event Prompts for Video Anomaly Detection [16.77262005540559]
A novel framework is proposed to guide the learning of suspected anomalies from event prompts.
It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos.
Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC.
arXiv Detail & Related papers (2024-03-02T10:42:47Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality.
We propose a novel approach to AD using explainability to capture such novel features as unexplained observations in the input space.
Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types.
arXiv Detail & Related papers (2023-10-01T21:24:05Z) - Weakly-Supervised Video Anomaly Detection with Snippet Anomalous
Attention [22.985681654402153]
We propose an Anomalous Attention mechanism for weakly-supervised anomaly detection.
Our approach takes into account snippet-level encoded features without the supervision of pseudo labels.
arXiv Detail & Related papers (2023-09-28T10:03:58Z) - Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
Video anomaly detection (VAD) has been paid increasing attention due to its potential applications.
Video Anomaly Retrieval ( VAR) aims to pragmatically retrieve relevant anomalous videos by cross-modalities.
We present two benchmarks, UCFCrime-AR and XD-Violence, constructed on top of prevalent anomaly datasets.
arXiv Detail & Related papers (2023-07-24T06:22:37Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - A Self-Reasoning Framework for Anomaly Detection Using Video-Level
Labels [17.615297975503648]
Alous event detection in surveillance videos is a challenging and practical research problem among image and video processing community.
We propose a weakly supervised anomaly detection framework based on deep neural networks which is trained in a self-reasoning fashion using only video-level labels.
The proposed framework has been evaluated on publicly available real-world anomaly detection datasets including UCF-crime, ShanghaiTech and Ped2.
arXiv Detail & Related papers (2020-08-27T02:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.