Informer in Algorithmic Investment Strategies on High Frequency Bitcoin Data
- URL: http://arxiv.org/abs/2503.18096v1
- Date: Sun, 23 Mar 2025 15:00:13 GMT
- Title: Informer in Algorithmic Investment Strategies on High Frequency Bitcoin Data
- Authors: Filip Stefaniuk, Robert Ćlepaczuk,
- Abstract summary: The article investigates the usage of Informer architecture for building automated trading strategies for high frequency Bitcoin data.<n>Three strategies using Informer model with different loss functions: Root Mean Squared Error (RMSE), Generalized Mean Absolute Directional Loss (GMADL) and Quantile loss, are proposed and evaluated.<n>The research provides evidence that employing an Informer model trained with the GMADL loss function can result in superior trading outcomes compared to the buy-and-hold approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The article investigates the usage of Informer architecture for building automated trading strategies for high frequency Bitcoin data. Three strategies using Informer model with different loss functions: Root Mean Squared Error (RMSE), Generalized Mean Absolute Directional Loss (GMADL) and Quantile loss, are proposed and evaluated against the Buy and Hold benchmark and two benchmark strategies based on technical indicators. The evaluation is conducted using data of various frequencies: 5 minute, 15 minute, and 30 minute intervals, over the 6 different periods. Although the Informer-based model with Quantile loss did not outperform the benchmark, two other models achieved better results. The performance of the model using RMSE loss worsens when used with higher frequency data while the model that uses novel GMADL loss function is benefiting from higher frequency data and when trained on 5 minute interval it beat all the other strategies on most of the testing periods. The primary contribution of this study is the application and assessment of the RMSE, GMADL, and Quantile loss functions with the Informer model to forecast future returns, subsequently using these forecasts to develop automated trading strategies. The research provides evidence that employing an Informer model trained with the GMADL loss function can result in superior trading outcomes compared to the buy-and-hold approach.
Related papers
- Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange.
Deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data.
The findings highlight the potential of deep learning for improving financial forecasting and investment strategies.
arXiv Detail & Related papers (2024-09-29T11:20:20Z) - Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) is a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC)
Our research delves deep into the intricacies of stock data, evaluating how various models handle the rapidly changing relevance of earnings data over time and over different sectors.
CET's foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages.
arXiv Detail & Related papers (2024-09-25T22:09:59Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Machine learning method for return direction forecasting of Exchange
Traded Funds using classification and regression models [0.0]
This article aims to propose and apply a machine learning method to analyze the direction of returns from Exchange Traded Funds (ETFs)
Regression and classification models were applied, using standard datasets from Brazilian and American markets.
In terms of risk and return, the models mostly performed better than the control metrics.
arXiv Detail & Related papers (2022-05-25T12:54:46Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - A Comparative Evaluation of Predominant Deep Learning Quantified Stock
Trading Strategies [0.38073142980733]
This study first reconstructs three deep learning powered stock trading models and their associated strategies that are representative of distinct approaches to the problem.
It then seeks to compare the performance of these strategies from different perspectives through trading simulations ran on three scenarios when the benchmarks are kept at historical low points for extended periods of time.
The results show that in extremely adverse market climates, investment portfolios managed by deep learning powered algorithms are able to avert accumulated losses by generating return sequences that shift the constantly negative CSI 300 benchmark return upward.
arXiv Detail & Related papers (2021-03-29T03:21:40Z) - Deep Reinforcement Learning for Active High Frequency Trading [1.6874375111244329]
We introduce the first end-to-end Deep Reinforcement Learning (DRL) based framework for active high frequency trading in the stock market.
We train DRL agents to trade one unit of Intel Corporation stock by employing the Proximal Policy Optimization algorithm.
arXiv Detail & Related papers (2021-01-18T15:09:28Z) - Evaluating data augmentation for financial time series classification [85.38479579398525]
We evaluate several augmentation methods applied to stocks datasets using two state-of-the-art deep learning models.
For a relatively small dataset augmentation methods achieve up to $400%$ improvement in risk adjusted return performance.
For a larger stock dataset augmentation methods achieve up to $40%$ improvement.
arXiv Detail & Related papers (2020-10-28T17:53:57Z) - From Sound Representation to Model Robustness [82.21746840893658]
We investigate the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
Averaged over various experiments on three environmental sound datasets, we found the ResNet-18 model outperforms other deep learning architectures.
arXiv Detail & Related papers (2020-07-27T17:30:49Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.