Voxel-based Point Cloud Geometry Compression with Space-to-Channel Context
- URL: http://arxiv.org/abs/2503.18283v1
- Date: Mon, 24 Mar 2025 01:56:08 GMT
- Title: Voxel-based Point Cloud Geometry Compression with Space-to-Channel Context
- Authors: Bojun Liu, Yangzhi Ma, Ao Luo, Li Li, Dong Liu,
- Abstract summary: We introduce a stage-wise Space-to-Channel (S2C) context model for both dense point clouds and low-level sparse point clouds.<n>For high-level sparse point clouds, we propose a level-wise S2C context model that addresses resolution limitations.<n> Experimental results show that our S2C context model achieves bit savings while maintaining or improving reconstruction quality.
- Score: 12.978693110398432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Voxel-based methods are among the most efficient for point cloud geometry compression, particularly with dense point clouds. However, they face limitations due to a restricted receptive field, especially when handling high-bit depth point clouds. To overcome this issue, we introduce a stage-wise Space-to-Channel (S2C) context model for both dense point clouds and low-level sparse point clouds. This model utilizes a channel-wise autoregressive strategy to effectively integrate neighborhood information at a coarse resolution. For high-level sparse point clouds, we further propose a level-wise S2C context model that addresses resolution limitations by incorporating Geometry Residual Coding (GRC) for consistent-resolution cross-level prediction. Additionally, we use the spherical coordinate system for its compact representation and enhance our GRC approach with a Residual Probability Approximation (RPA) module, which features a large kernel size. Experimental results show that our S2C context model not only achieves bit savings while maintaining or improving reconstruction quality but also reduces computational complexity compared to state-of-the-art voxel-based compression methods.
Related papers
- Efficient Implicit Neural Compression of Point Clouds via Learnable Activation in Latent Space [10.056460330355193]
Implicit Neural Representations (INRs) have emerged as a powerful paradigm in deep learning.
We propose textbfPICO, an INR-based framework for static point cloud compression.
Our approach exhibits highly competitive results, with an average PCQM gain of $2.7 times 10-3$.
arXiv Detail & Related papers (2025-04-20T03:37:32Z) - Implicit Neural Compression of Point Clouds [58.45774938982386]
NeRC$textbf3$ is a novel point cloud compression framework leveraging implicit neural representations to handle both geometry and attributes.<n>For dynamic point clouds, 4D-NeRC$textbf3$ demonstrates superior geometry compression compared to state-of-the-art G-PCC and V-PCC standards.
arXiv Detail & Related papers (2024-12-11T03:22:00Z) - Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution [55.9977636042469]
Bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information.
densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene.
We propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution.
arXiv Detail & Related papers (2024-11-05T16:37:30Z) - PVContext: Hybrid Context Model for Point Cloud Compression [61.24130634750288]
We propose PVContext, a hybrid context model for effective octree-based point cloud compression.
PVContext comprises two components with distinct modalities: the Voxel Context, which accurately represents local geometric information using voxels, and the Point Context, which efficiently preserves global shape information from point clouds.
arXiv Detail & Related papers (2024-09-19T12:47:35Z) - Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
We use the KNN method to determine the neighborhoods of raw surface points.
A conditional probability model is adaptive to local geometry, leading to significant rate reduction.
We incorporate an implicit neural representation into the refinement layer, allowing the decoder to sample points on the underlying surface at arbitrary densities.
arXiv Detail & Related papers (2024-08-06T05:24:06Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - Lightweight super resolution network for point cloud geometry
compression [34.42460388539782]
We present an approach for compressing point cloud geometry by leveraging a lightweight super-resolution network.
The proposed method involves decomposing a point cloud into a base point cloud and the patterns for reconstructing the original point cloud.
Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable compression performance achieved by our method.
arXiv Detail & Related papers (2023-11-02T03:34:51Z) - Point Cloud Compression with Sibling Context and Surface Priors [47.96018990521301]
We present a novel octree-based multi-level framework for large-scale point cloud compression.
In this framework, we propose a new entropy model that explores the hierarchical dependency in an octree.
We locally fit surfaces with a voxel-based geometry-aware module to provide geometric priors in entropy encoding.
arXiv Detail & Related papers (2022-05-02T09:13:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.