Coeff-Tuning: A Graph Filter Subspace View for Tuning Attention-Based Large Models
- URL: http://arxiv.org/abs/2503.18337v1
- Date: Mon, 24 Mar 2025 04:42:40 GMT
- Title: Coeff-Tuning: A Graph Filter Subspace View for Tuning Attention-Based Large Models
- Authors: Zichen Miao, Wei Chen, Qiang Qiu,
- Abstract summary: Transformer-based large pre-trained models have shown remarkable generalization ability.<n>Various parameter-efficient fine-tuning (PEFT) methods have been proposed to customize these models on downstream tasks with minimal computational and memory budgets.<n>In this paper, we propose to tune the large pre-trained transformers by learning a small set of combination coefficients that construct a more expressive filter subspace.
- Score: 28.223665047553016
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transformer-based large pre-trained models have shown remarkable generalization ability, and various parameter-efficient fine-tuning (PEFT) methods have been proposed to customize these models on downstream tasks with minimal computational and memory budgets. Previous PEFT methods are primarily designed from a tensor-decomposition perspective that tries to effectively tune the linear transformation by finding the smallest subset of parameters to train. Our study adopts an orthogonal view by representing the attention operation as a graph convolution and formulating the multi-head attention maps as a convolutional filter subspace, with each attention map as a subspace element. In this paper, we propose to tune the large pre-trained transformers by learning a small set of combination coefficients that construct a more expressive filter subspace from the original multi-head attention maps. We show analytically and experimentally that the tuned filter subspace can effectively expand the feature space of the multi-head attention and further enhance the capacity of transformers. We further stabilize the fine-tuning with a residual parameterization of the tunable subspace coefficients, and enhance the generalization with a regularization design by directly applying dropout on the tunable coefficient during training. The tunable coefficients take a tiny number of parameters and can be combined with previous PEFT methods in a plug-and-play manner. Extensive experiments show that our approach achieves superior performances than PEFT baselines with neglectable additional parameters.
Related papers
- ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Spectral Adapter: Fine-Tuning in Spectral Space [45.72323731094864]
We study the enhancement of current PEFT methods by incorporating the spectral information of pretrained weight matrices into the fine-tuning procedure.
We show through extensive experiments that the proposed fine-tuning model enables better parameter efficiency and tuning performance as well as benefits multi-adapter fusion.
arXiv Detail & Related papers (2024-05-22T19:36:55Z) - Large Convolutional Model Tuning via Filter Subspace [28.223665047553016]
We propose to fine-tune pre-trained models by adjusting only filter atoms, which are responsible for spatial-only convolution.<n>We show that such a simple scheme surpasses previous tuning baselines for both discriminate and generative tasks.
arXiv Detail & Related papers (2024-03-01T04:16:08Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
We equip PEFT with a cross-block orchestration mechanism to enable the adaptation of the Segment Anything Model (SAM) to various downstream scenarios.
We propose an intra-block enhancement module, which introduces a linear projection head whose weights are generated from a hyper-complex layer.
Our proposed approach consistently improves the segmentation performance significantly on novel scenarios with only around 1K additional parameters.
arXiv Detail & Related papers (2023-11-28T11:23:34Z) - Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization [102.92240148504774]
We study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation.
Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters.
We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT)
arXiv Detail & Related papers (2023-11-10T18:59:54Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - A Closer Look at Parameter-Efficient Tuning in Diffusion Models [39.52999446584842]
Large-scale diffusion models like Stable Diffusion are powerful and find various real-world applications.
We investigate parameter-efficient tuning in large diffusion models by inserting small learnable modules.
arXiv Detail & Related papers (2023-03-31T16:23:29Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context.
We show the effects of neural network compression in the classification setting and both compression and improved stability training in the generative adversarial training setting.
arXiv Detail & Related papers (2021-03-07T00:15:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.