論文の概要: InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment
- arxiv url: http://arxiv.org/abs/2503.18454v1
- Date: Mon, 24 Mar 2025 08:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:49.665708
- Title: InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment
- Title(参考訳): InPO:効率的な拡散モデルアライメントのためのDDIMの並列化によるインバージョン予測最適化
- Authors: Yunhong Lu, Qichao Wang, Hengyuan Cao, Xierui Wang, Xiaoyin Xu, Min Zhang,
- Abstract要約: 拡散モデルの直接選好アライメント法であるDDIM-InPOを導入する。
提案手法は拡散モデルを単一ステップ生成モデルとして概念化し,特定の潜伏変数の出力を選択的に微調整する。
実験結果から, DDIM-InPOは400ステップの微調整で最先端の性能を達成できることがわかった。
- 参考スコア(独自算出の注目度): 12.823734370183482
- License:
- Abstract: Without using explicit reward, direct preference optimization (DPO) employs paired human preference data to fine-tune generative models, a method that has garnered considerable attention in large language models (LLMs). However, exploration of aligning text-to-image (T2I) diffusion models with human preferences remains limited. In comparison to supervised fine-tuning, existing methods that align diffusion model suffer from low training efficiency and subpar generation quality due to the long Markov chain process and the intractability of the reverse process. To address these limitations, we introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models. Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively. In order to accomplish this objective, we first assign implicit rewards to any latent variable directly via a reparameterization technique. Then we construct an Inversion technique to estimate appropriate latent variables for preference optimization. This modification process enables the diffusion model to only fine-tune the outputs of latent variables that have a strong correlation with the preference dataset. Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning, surpassing all preference aligning baselines for T2I diffusion models in human preference evaluation tasks.
- Abstract(参考訳): 直接選好最適化(DPO)は、明示的な報酬を使わずに、ペア化された人間の選好データを微調整生成モデルに適用し、大きな言語モデル(LLM)においてかなりの注目を集める手法である。
しかし,テキスト・ツー・イメージ(T2I)拡散モデルと人間の嗜好との整合性はいまだに限られている。
教師付き微調整と比較して、拡散モデルを整列させる既存の方法は、長いマルコフ連鎖過程と逆過程の引き込み性による訓練効率の低下とサブパー生成品質に悩まされている。
これらの制約に対処するため,拡散モデルの直接的嗜好アライメント法であるDDIM-InPOを導入する。
提案手法は拡散モデルを単一ステップ生成モデルとして概念化し,特定の潜伏変数の出力を選択的に微調整する。
この目的を達成するために、まず、再パラメータ化手法を介して任意の潜在変数に暗黙の報酬を割り当てる。
次に、好みの最適化のために適切な潜伏変数を推定するインバージョン手法を構築する。
この修正プロセスにより、拡散モデルは、選好データセットと強い相関を持つ潜伏変数の出力のみを微調整できる。
実験結果から, DDIM-InPOは, 人間の選好評価作業におけるT2I拡散モデルに対する選好整合ベースラインを超越して, わずか400ステップの微調整を行い, 最先端性能を達成できることが示唆された。
関連論文リスト
- Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) は、テキスト・ツー・イメージ(T2I)拡散モデルを調整する新しい手法である。
CaPOは、人間の注釈のない複数の報酬モデルからの一般的な好みを取り入れている。
実験結果から, CaPOは従来法よりも常に優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-02-04T18:59:23Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
拡散モデルと人間の嗜好を整合させるためのTalored Optimization Preference(TailorPO)フレームワークを提案する。
提案手法は,ステップワイド報酬に基づいて,中間雑音のサンプルを直接ランク付けし,勾配方向の問題を効果的に解決する。
実験結果から,本手法は審美的,人為的な画像生成能力を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2025-02-01T16:08:43Z) - Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
拡散モデルとパーソナライズされた嗜好を整合させるマルチリワード最適化の目的であるPDを導入する。
PPDでは、拡散モデルがユーザーの個人の好みを数秒で学習する。
提案手法は,Stable Cascadeに対して平均76%の勝利率を達成し,特定のユーザの好みをより正確に反映した画像を生成する。
論文 参考訳(メタデータ) (2025-01-11T22:38:41Z) - Direct Preference Optimization With Unobserved Preference Heterogeneity [16.91835461818937]
本稿では,生成モデルと人間の嗜好を一致させる新しい手法を提案する。
そこで我々はDPOに対する期待最大化適応を提案し、アノテータの潜在選好型に基づくモデルの混合を生成する。
我々のアルゴリズムはDPOの単純さを生かし、多様な好みを調節する。
論文 参考訳(メタデータ) (2024-05-23T21:25:20Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
拡散DPOは,ヒトの比較データを直接最適化することにより,拡散モデルを人間の嗜好に合わせる手法である。
拡散DPOを用いた最先端安定拡散XL(SDXL)-1.0モデルの基礎モデルを微調整する。
また、AIフィードバックを使用し、人間の好みのトレーニングに匹敵するパフォーマンスを持つ亜種も開発しています。
論文 参考訳(メタデータ) (2023-11-21T15:24:05Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。