論文の概要: UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach
- arxiv url: http://arxiv.org/abs/2503.18541v1
- Date: Mon, 24 Mar 2025 10:51:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:32.556054
- Title: UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach
- Title(参考訳): UniPCGC: 効率的な統一アプローチによる実用点クラウド幾何圧縮に向けて
- Authors: Kangli Wang, Wei Gao,
- Abstract要約: 我々は,UniPCGCと呼ばれる効率的な統合ポイントクラウド幾何圧縮フレームワークを提案する。
可逆圧縮、無損失圧縮、可変レート、可変複雑性をサポートする。
損失圧縮ではCR比が8.1%、損失圧縮ではBjontegaard Delta Rate(BD-Rate)が14.02%向上した。
- 参考スコア(独自算出の注目度): 4.754973569457509
- License:
- Abstract: Learning-based point cloud compression methods have made significant progress in terms of performance. However, these methods still encounter challenges including high complexity, limited compression modes, and a lack of support for variable rate, which restrict the practical application of these methods. In order to promote the development of practical point cloud compression, we propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC. It is a lightweight framework that supports lossy compression, lossless compression, variable rate and variable complexity. First, we introduce the Uneven 8-Stage Lossless Coder (UELC) in the lossless mode, which allocates more computational complexity to groups with higher coding difficulty, and merges groups with lower coding difficulty. Second, Variable Rate and Complexity Module (VRCM) is achieved in the lossy mode through joint adoption of a rate modulation module and dynamic sparse convolution. Finally, through the dynamic combination of UELC and VRCM, we achieve lossy compression, lossless compression, variable rate and complexity within a unified framework. Compared to the previous state-of-the-art method, our method achieves a compression ratio (CR) gain of 8.1\% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02\% on lossy compression, while also supporting variable rate and variable complexity.
- Abstract(参考訳): 学習ベースのポイントクラウド圧縮手法は、性能面で大きな進歩を遂げた。
しかし、これらの手法は、高複雑性、圧縮モードの制限、変数レートのサポートの欠如といった課題に直面しており、これらの手法の実用化は制限されている。
実用点クラウド圧縮の開発を促進するため,UniPCGCと呼ばれる効率的な統合点クラウド幾何圧縮フレームワークを提案する。
ロスレス圧縮、ロスレス圧縮、可変レート、可変複雑性をサポートする軽量フレームワークである。
まず,Uneven 8-Stage Lossless Coder (UELC) をロスレスモードで導入する。
第2に、可変レート・複雑度モジュール(VRCM)は、レート変調モジュールと動的スパース畳み込みを併用することにより、損失モードで達成される。
最後に、UELCとVRCMの動的組み合わせにより、統一されたフレームワーク内での損失圧縮、損失のない圧縮、変動率、複雑さを実現する。
従来の最先端手法と比較して,無損失圧縮では8.1\%の圧縮比(CR)、損失圧縮では14.02\%のBjontegaard Delta Rate(BD-Rate)の圧縮比(CR)ゲインを実現し,変動率と変動複雑性をサポートする。
関連論文リスト
- Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) は、1つのフィードフォワードパスで3DGS表現を高速に圧縮できる最適化フリーモデルである。
FCGSは圧縮比を20倍以上に向上し、高精細度を維持しながら、ほとんどのシーン毎のSOTA最適化手法を上回ります。
論文 参考訳(メタデータ) (2024-10-10T15:13:08Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
本稿では,新しい構造化圧縮フレームワークである textbfModular bfDecomposition (MoDeGPT) を紹介する。
MoDeGPTはTransformerブロックを行列対からなるモジュールに分割し、隠れた次元を減らす。
本実験では, 後方伝播を伴わないMoDeGPTが, 従来の圧縮手法と一致するか, あるいは超えていることを示す。
論文 参考訳(メタデータ) (2024-08-19T01:30:14Z) - Data-Aware Gradient Compression for FL in Communication-Constrained Mobile Computing [20.70238092277094]
モバイル環境におけるフェデレートラーニング(FL)は、重要なコミュニケーションボトルネックに直面している。
ワンサイズ・フィット・オール圧縮アプローチは、ワーカ間でのさまざまなデータボリュームを考慮に入れない。
本研究では,データ分布とボリュームが異なる作業者に対して,様々な圧縮比を提案する。
論文 参考訳(メタデータ) (2023-11-13T13:24:09Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
本稿では,無損失圧縮と無損失圧縮を統一的に組み合わせた後学習モデルサイズ圧縮法を提案する。
精度を犠牲にすることなく安定な10times$圧縮比を達成でき、短時間で20times$圧縮比を小さくすることができる。
論文 参考訳(メタデータ) (2023-08-08T14:10:16Z) - GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
Training [0.0]
分散データ並列(DDP)トレーニングは、複数のデバイスがデータのサブセットをトレーニングし、アップデートを集約してグローバルに共有するモデルを生成することにより、アプリケーション全体のスループットを向上させる。
GraVACは、モデル進捗を評価し、圧縮に関連する情報損失を評価することで、トレーニング全体を通して圧縮係数を動的に調整するフレームワークである。
静的圧縮係数を使用するのとは対照的に、GraVACはResNet101、VGG16、LSTMのエンドツーエンドのトレーニング時間をそれぞれ4.32x、1.95x、6.67x削減する。
論文 参考訳(メタデータ) (2023-05-20T14:25:17Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
クロスモーダル圧縮は、視覚データのためのセマンティック圧縮フレームワークである。
提案したCMCは,超高圧縮比で再現性の向上が期待できることを示す。
論文 参考訳(メタデータ) (2022-09-06T15:31:11Z) - Split Hierarchical Variational Compression [21.474095984110622]
可変オートエンコーダ(VAE)は、画像データセットの圧縮を行う上で大きな成功を収めている。
SHVCは、ピクセルごとの自己回帰と完全に分解された確率モデルとの一般化を可能にする、効率的な自己回帰的サブピクセル畳み込みを導入している。
論文 参考訳(メタデータ) (2022-04-05T09:13:38Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。