UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach
- URL: http://arxiv.org/abs/2503.18541v1
- Date: Mon, 24 Mar 2025 10:51:28 GMT
- Title: UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach
- Authors: Kangli Wang, Wei Gao,
- Abstract summary: We propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC.<n>It supports lossy compression, lossless compression, variable rate and variable complexity.<n>Our method achieves a compression ratio (CR) gain of 8.1% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02% on lossy compression.
- Score: 4.754973569457509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based point cloud compression methods have made significant progress in terms of performance. However, these methods still encounter challenges including high complexity, limited compression modes, and a lack of support for variable rate, which restrict the practical application of these methods. In order to promote the development of practical point cloud compression, we propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC. It is a lightweight framework that supports lossy compression, lossless compression, variable rate and variable complexity. First, we introduce the Uneven 8-Stage Lossless Coder (UELC) in the lossless mode, which allocates more computational complexity to groups with higher coding difficulty, and merges groups with lower coding difficulty. Second, Variable Rate and Complexity Module (VRCM) is achieved in the lossy mode through joint adoption of a rate modulation module and dynamic sparse convolution. Finally, through the dynamic combination of UELC and VRCM, we achieve lossy compression, lossless compression, variable rate and complexity within a unified framework. Compared to the previous state-of-the-art method, our method achieves a compression ratio (CR) gain of 8.1\% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02\% on lossy compression, while also supporting variable rate and variable complexity.
Related papers
- Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.
Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.
Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - EvoPress: Accurate Dynamic Model Compression via Evolutionary Search [33.86918407429272]
EvoPress is an evolutionary framework for dynamic compression of large language models.<n>It identifies optimal compression profiles in a highly efficient manner.<n>We set new benchmarks for structural pruning (block/layer dropping), unstructured sparsity, and quantization with dynamic bitwidths.
arXiv Detail & Related papers (2024-10-18T17:46:37Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
This paper introduces textbfModular bfDecomposition (MoDeGPT), a novel structured compression framework.<n>MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions.<n>Our experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods.
arXiv Detail & Related papers (2024-08-19T01:30:14Z) - Data-Aware Gradient Compression for FL in Communication-Constrained Mobile Computing [20.70238092277094]
Federated Learning (FL) in mobile environments faces significant communication bottlenecks.
One-size-fits-all compression approach does not account for the varying data volumes across workers.
We propose varying compression ratios to workers with distinct data distributions and volumes.
arXiv Detail & Related papers (2023-11-13T13:24:09Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
We propose a post-training model size compression method that combines lossy and lossless compression in a unified way.
Our method can achieve a stable $10times$ compression ratio without sacrificing accuracy and a $20times$ compression ratio with minor accuracy loss in a short time.
arXiv Detail & Related papers (2023-08-08T14:10:16Z) - GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
Training [0.0]
Distributed data-parallel (DDP) training improves overall application throughput as multiple devices train on a subset of data and aggregate updates to produce a globally shared model.
GraVAC is a framework to dynamically adjust compression factor throughout training by evaluating model progress and assessing information loss associated with compression.
As opposed to using a static compression factor, GraVAC reduces end-to-end training time for ResNet101, VGG16 and LSTM by 4.32x, 1.95x and 6.67x respectively.
arXiv Detail & Related papers (2023-05-20T14:25:17Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
Cross modal compression is a semantic compression framework for visual data.
We show that our proposed CMC can achieve encouraging reconstructed results with an ultrahigh compression ratio.
arXiv Detail & Related papers (2022-09-06T15:31:11Z) - Split Hierarchical Variational Compression [21.474095984110622]
Variational autoencoders (VAEs) have witnessed great success in performing the compression of image datasets.
SHVC introduces an efficient autoregressive sub-pixel convolution, that allows a generalisation between per-pixel autoregressions and fully factorised probability models.
arXiv Detail & Related papers (2022-04-05T09:13:38Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.