論文の概要: Reinforcement Learning in Switching Non-Stationary Markov Decision Processes: Algorithms and Convergence Analysis
- arxiv url: http://arxiv.org/abs/2503.18607v1
- Date: Mon, 24 Mar 2025 12:05:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:07.070322
- Title: Reinforcement Learning in Switching Non-Stationary Markov Decision Processes: Algorithms and Convergence Analysis
- Title(参考訳): 非定常マルコフ決定過程における強化学習:アルゴリズムと収束解析
- Authors: Mohsen Amiri, Sindri Magnússon,
- Abstract要約: そこで我々は,背景となるマルコフ連鎖に基づいて,環境が時間とともに切り替わる,スイッチング非定常マルコフ決定プロセス(SNS-MDP)を紹介した。
固定されたポリシーの下では、SNS-MDPの値関数はマルコフ連鎖の統計的性質によって決定される閉形式解を認める。
このフレームワークは、複雑な時間変化の文脈で意思決定を効果的に導くことができるかを示す。
- 参考スコア(独自算出の注目度): 6.399565088857091
- License:
- Abstract: Reinforcement learning in non-stationary environments is challenging due to abrupt and unpredictable changes in dynamics, often causing traditional algorithms to fail to converge. However, in many real-world cases, non-stationarity has some structure that can be exploited to develop algorithms and facilitate theoretical analysis. We introduce one such structure, Switching Non-Stationary Markov Decision Processes (SNS-MDP), where environments switch over time based on an underlying Markov chain. Under a fixed policy, the value function of an SNS-MDP admits a closed-form solution determined by the Markov chain's statistical properties, and despite the inherent non-stationarity, Temporal Difference (TD) learning methods still converge to the correct value function. Furthermore, policy improvement can be performed, and it is shown that policy iteration converges to the optimal policy. Moreover, since Q-learning converges to the optimal Q-function, it likewise yields the corresponding optimal policy. To illustrate the practical advantages of SNS-MDPs, we present an example in communication networks where channel noise follows a Markovian pattern, demonstrating how this framework can effectively guide decision-making in complex, time-varying contexts.
- Abstract(参考訳): 非定常環境での強化学習は、急激で予測不可能な動的変化のために困難であり、しばしば伝統的なアルゴリズムが収束しない。
しかし、多くの実世界の場合において、非定常性はアルゴリズムを開発し、理論解析を促進するために利用することができるいくつかの構造を持つ。
本稿では,非定常マルコフ決定プロセス(SNS-MDP)を導入し,その基盤となるマルコフ連鎖に基づいて環境が時間とともに切り替わる仕組みを提案する。
固定されたポリシーの下では、SNS-MDPの値関数はマルコフ連鎖の統計的性質によって決定される閉形式解を認め、固有の非定常性にもかかわらず、時間差分学習法(TD)は正しい値関数に収束する。
さらに、政策改善を行うことができ、政策反復が最適な政策に収束することを示す。
さらに、Q-ラーニングは最適Q-関数に収束するため、対応する最適ポリシーも得られる。
SNS-MDPの実用的優位性を実証するために,チャネルノイズがマルコフパターンに従う通信ネットワークにおいて,このフレームワークが複雑な時間変化コンテキストにおける意思決定を効果的に導く方法を示す。
関連論文リスト
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
マルコフ連鎖のベクトル値および行列値関数に対する新しい高次元濃度不等式とベリー・エッシー境界を開発する。
我々は、強化学習における政策評価に広く用いられているTD学習アルゴリズムを解析する。
論文 参考訳(メタデータ) (2025-02-19T15:33:55Z) - Robust Offline Reinforcement Learning with Linearly Structured $f$-Divergence Regularization [10.465789490644031]
我々は、ロバストな正則化マルコフ決定プロセスのための新しいフレームワーク(d$-RRMDP)を提案する。
オフラインRL設定のために、ロバスト正規化悲観的値イテレーション(R2PVI)と呼ばれるアルゴリズム群を開発する。
論文 参考訳(メタデータ) (2024-11-27T18:57:03Z) - Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
強化学習(Reinforcement Learning, RL)は、環境と対話するエージェントを作成することによって、シーケンシャルな意思決定問題に取り組む。
既存のアルゴリズムはしばしばこれらの問題を静的とみなし、期待される報酬を最大化するためにモデルパラメータの点推定に重点を置いている。
我々の研究は、カルマンパラダイムを活用して、Langevinized Kalman TemporalTDと呼ばれる新しい定量化およびサンプリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-03-19T22:18:19Z) - A Robust Policy Bootstrapping Algorithm for Multi-objective
Reinforcement Learning in Non-stationary Environments [15.794728813746397]
多目的強化学習法は、多目的最適化手法で強化学習パラダイムを融合させる。
これらの方法の大きな欠点の1つは、環境における非定常力学への適応性の欠如である。
本研究では,非定常環境において,凸カバレッジの集合をオンライン的に頑健に進化させることのできる,新しい多目的強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-18T02:15:12Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Model-Free Reinforcement Learning for Optimal Control of MarkovDecision
Processes Under Signal Temporal Logic Specifications [7.842869080999489]
有限水平マルコフ決定過程に対する最適ポリシーを求めるためのモデルフリー強化学習アルゴリズムを提案する。
本稿では,不確実性および性能目標下での複雑なミッションにおけるロボット動作計画の文脈におけるアプローチの有効性について述べる。
論文 参考訳(メタデータ) (2021-09-27T22:44:55Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
非定常環境におけるポリシーを効率的に学習するアルゴリズムを導入する。
これは、リアルタイム、高信頼な変更点検出統計において、潜在的に無限のデータストリームと計算を解析する。
i) このアルゴリズムは, 予期せぬ状況変化が検出されるまでの遅延を最小限に抑え, 迅速な応答を可能にする。
論文 参考訳(メタデータ) (2021-05-20T01:57:52Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
未知のマルコフ決定過程に対して学習者がmベースコントローラを与えられる不適切な強化学習設定を考える。
制御器の不適切な混合のクラス上で動作する勾配に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T14:53:55Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。