論文の概要: Towards Human-Understandable Multi-Dimensional Concept Discovery
- arxiv url: http://arxiv.org/abs/2503.18629v1
- Date: Mon, 24 Mar 2025 12:45:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:34.544306
- Title: Towards Human-Understandable Multi-Dimensional Concept Discovery
- Title(参考訳): 人間の理解できない多次元概念発見を目指して
- Authors: Arne Grobrügge, Niklas Kühl, Gerhard Satzger, Philipp Spitzer,
- Abstract要約: コンセプトベースのAI(C-XAI)は、ピクセルを人間の理解可能な概念に変換することによって、従来の唾液マップの限界を克服することを目的としている。
概念理解性を高めるために,Human-Understandable Multi-dimensional Concept Discovery (HU-MCD)を提案する。
HU-MCDが既存のC-XAI法よりも正確で信頼性の高い説明を提供することを示す。
- 参考スコア(独自算出の注目度): 3.224880576815583
- License:
- Abstract: Concept-based eXplainable AI (C-XAI) aims to overcome the limitations of traditional saliency maps by converting pixels into human-understandable concepts that are consistent across an entire dataset. A crucial aspect of C-XAI is completeness, which measures how well a set of concepts explains a model's decisions. Among C-XAI methods, Multi-Dimensional Concept Discovery (MCD) effectively improves completeness by breaking down the CNN latent space into distinct and interpretable concept subspaces. However, MCD's explanations can be difficult for humans to understand, raising concerns about their practical utility. To address this, we propose Human-Understandable Multi-dimensional Concept Discovery (HU-MCD). HU-MCD uses the Segment Anything Model for concept identification and implements a CNN-specific input masking technique to reduce noise introduced by traditional masking methods. These changes to MCD, paired with the completeness relation, enable HU-MCD to enhance concept understandability while maintaining explanation faithfulness. Our experiments, including human subject studies, show that HU-MCD provides more precise and reliable explanations than existing C-XAI methods. The code is available at https://github.com/grobruegge/hu-mcd.
- Abstract(参考訳): 概念ベースのeXplainable AI(C-XAI)は、ピクセルをデータセット全体にわたって一貫性のある人間の理解可能な概念に変換することによって、従来の唾液マップの限界を克服することを目的としている。
C-XAIの重要な側面は完全性(completeness)である。
C-XAI法のうち、MCD(Multi-dimensional Concept Discovery)は、CNN潜在空間を独立かつ解釈可能な概念部分空間に分解することで、完全性を効果的に改善する。
しかし、MDDの説明は人間が理解することが困難であり、その実用性に対する懸念を提起する。
そこで我々は,Human-Understandable Multi-dimensional Concept Discovery (HU-MCD)を提案する。
HU-MCDは概念識別にSegment Anything Modelを使用し、CNN固有の入力マスキング技術を実装し、従来のマスキング手法によるノイズを低減する。
これらのMCDへの変更は、完全性関係と組み合わせて、HU-MCDは、説明の忠実さを維持しながら概念の理解性を高めることができる。
HU-MCDが既存のC-XAI法よりも正確で信頼性の高い説明を提供することを示す。
コードはhttps://github.com/grobruegge/hu-mcd.comで公開されている。
関連論文リスト
- OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
創造的な視覚概念の生成は、しばしば関連する結果を生み出すために参照イメージ内の特定の概念からインスピレーションを引き出す。
我々は,創造的画像生成のための視覚的概念分離手法であるOmniPrismを提案する。
提案手法は,自然言語で案内される不整合概念表現を学習し,これらの概念を組み込むために拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-12-16T18:59:52Z) - How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
本稿では,CIDM(Concept-Incremental Text-to-image Diffusion Model)を提案する。
破滅的な忘れと概念の無視を解決し、新しいカスタマイズタスクを概念的な方法で学習する。
実験により、CIDMが既存のカスタム拡散モデルを上回ることが確認された。
論文 参考訳(メタデータ) (2024-10-23T06:47:29Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Concept Induction using LLMs: a user experiment for assessment [1.1982127665424676]
本研究では,人間に対する説明として意味のある高レベルな概念を生成するために,LLM(Large Language Model)の可能性を探る。
我々は、LLMによって生成された概念を、人間によって生成された概念とECII概念誘導システムという、他の2つの方法と比較する。
人為的な説明は依然として優れているが, GPT-4 から派生した概念は, ECII が生成した概念よりも人間にとって理解しやすいことが示唆された。
論文 参考訳(メタデータ) (2024-04-18T03:22:02Z) - Understanding Multimodal Deep Neural Networks: A Concept Selection View [29.08342307127578]
概念に基づくモデルは、ディープニューラルネットワークによって抽出されたブラックボックスの視覚表現を、人間の理解可能な概念のセットにマッピングする。
人間の先入観を導入することなくコア概念をマイニングするための2段階概念選択モデル(CSM)を提案する。
提案手法は,エンドツーエンドのブラックボックスモデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-04-13T11:06:49Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - Explain Any Concept: Segment Anything Meets Concept-Based Explanation [11.433807960637685]
Segment Anything Model (SAM)は、正確で包括的なインスタンスセグメンテーションを実行するための強力なフレームワークとして実証されている。
我々は、効果的で柔軟な概念に基づく説明方法、すなわち Explain Any Concept (EAC) を提供する。
そこで我々は,Surrogateモデルによる効率的な説明を可能にする軽量なPIE方式を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:26:51Z) - Multi-dimensional concept discovery (MCD): A unifying framework with
completeness guarantees [1.9465727478912072]
本稿では,概念レベルの完全性関係を満たす従来のアプローチの拡張として,多次元概念発見(MCD)を提案する。
より制約のある概念定義に対するMDDの優位性を実証的に実証する。
論文 参考訳(メタデータ) (2023-01-27T18:53:19Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
我々は、深層畳み込みニューラルネットワーク(CNN)による決定を説明するための、新しい説明可能なAI(XAI)フレームワークを提案する。
単発応答として説明を生成するXAIの現在の手法とは対照的に,我々は反復的な通信プロセスとして説明を行う。
本フレームワークは,機械の心と人間の心の相違を媒介し,対話における説明文のシーケンスを生成する。
論文 参考訳(メタデータ) (2021-09-03T09:46:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。