Robust face recognition based on the wing loss and the $\ell_1$ regularization
- URL: http://arxiv.org/abs/2503.18652v1
- Date: Mon, 24 Mar 2025 13:17:41 GMT
- Title: Robust face recognition based on the wing loss and the $\ell_1$ regularization
- Authors: Yaoyao Yun, Jianwen Xu,
- Abstract summary: Wing-constrained sparse coding model(WCSC) and its weighted version(WWCSC) are introduced.<n>WWCSC has a very high recognition rate even in complex situations where face images have high occlusion or high damage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, sparse sampling techniques based on regression analysis have witnessed extensive applications in face recognition research. Presently, numerous sparse sampling models based on regression analysis have been explored by various researchers. Nevertheless, the recognition rates of the majority of these models would be significantly decreased when confronted with highly occluded and highly damaged face images. In this paper, a new wing-constrained sparse coding model(WCSC) and its weighted version(WWCSC) are introduced, so as to deal with the face recognition problem in complex circumstances, where the alternating direction method of multipliers (ADMM) algorithm is employed to solve the corresponding minimization problems. In addition, performances of the proposed method are examined based on the four well-known facial databases, namely the ORL facial database, the Yale facial database, the AR facial database and the FERET facial database. Also, compared to the other methods in the literatures, the WWCSC has a very high recognition rate even in complex situations where face images have high occlusion or high damage, which illustrates the robustness of the WWCSC method in facial recognition.
Related papers
- CemiFace: Center-based Semi-hard Synthetic Face Generation for Face Recognition [33.17771044475894]
We show that face images with certain degree of similarities to their identity centers show great effectiveness in the performance of trained face recognition models.
Inspired by this, we propose a novel diffusion-based approach (namely Center-based Semi-hard Synthetic Face Generation) which produces facial samples with various levels of similarity to the subject center.
arXiv Detail & Related papers (2024-09-27T16:11:30Z) - Generalized Face Liveness Detection via De-fake Face Generator [52.23271636362843]
Previous Face Anti-spoofing (FAS) methods face the challenge of generalizing to unseen domains.<n>We propose an Anomalous cue Guided FAS (AG-FAS) method, which can effectively leverage large-scale additional real faces.<n>Our method achieves state-of-the-art results under cross-domain evaluations with unseen scenarios and unknown presentation attacks.
arXiv Detail & Related papers (2024-01-17T06:59:32Z) - An Evaluation of Forensic Facial Recognition [16.17759191184531]
We describe the construction of a large-scale synthetic facial dataset along with a controlled facial forensic lineup.
We evaluate the accuracy of two popular neural-based recognition systems.
We find that previously reported face recognition accuracies of more than 95% drop to as low as 65% in this more challenging forensic scenario.
arXiv Detail & Related papers (2023-11-10T16:02:46Z) - Recognizability Embedding Enhancement for Very Low-Resolution Face
Recognition and Quality Estimation [21.423956631978186]
We study principled approaches to elevate the recognizability of a face in the embedding space instead of the visual quality.
We first formulate a robust learning-based face recognizability measure, namely recognizability index (RI)
We then devise an index diversion loss to push the hard-to-recognize face embedding with low RI away from unrecognizable faces cluster to boost the RI, which reflects better recognizability.
arXiv Detail & Related papers (2023-04-20T03:18:03Z) - A Survey of Deep Face Restoration: Denoise, Super-Resolution, Deblur,
Artifact Removal [177.21001709272144]
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images.
This paper comprehensively surveys recent advances in deep learning techniques for face restoration.
arXiv Detail & Related papers (2022-11-05T07:08:15Z) - Identity-Preserving Pose-Robust Face Hallucination Through Face Subspace
Prior [14.353574903736343]
A novel face super-resolution approach will be introduced, in which the hallucinated face is forced to lie in a subspace spanned by the available training faces.
A 3D dictionary alignment scheme is also presented, through which the algorithm becomes capable of dealing with low-resolution faces taken in uncontrolled conditions.
In extensive experiments carried out on several well-known face datasets, the proposed algorithm shows remarkable performance by generating detailed and close to ground truth results.
arXiv Detail & Related papers (2021-11-20T17:08:38Z) - LR-to-HR Face Hallucination with an Adversarial Progressive
Attribute-Induced Network [67.64536397027229]
Face super-resolution is a challenging and highly ill-posed problem.
We propose an end-to-end progressive learning framework incorporating facial attributes.
We show that the proposed approach can yield satisfactory face hallucination images outperforming other state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-29T19:50:45Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Deep Face Super-Resolution with Iterative Collaboration between
Attentive Recovery and Landmark Estimation [92.86123832948809]
We propose a deep face super-resolution (FSR) method with iterative collaboration between two recurrent networks.
In each recurrent step, the recovery branch utilizes the prior knowledge of landmarks to yield higher-quality images.
A new attentive fusion module is designed to strengthen the guidance of landmark maps.
arXiv Detail & Related papers (2020-03-29T16:04:48Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.