A Comprehensive Review on Hashtag Recommendation: From Traditional to Deep Learning and Beyond
- URL: http://arxiv.org/abs/2503.18669v2
- Date: Tue, 25 Mar 2025 04:51:12 GMT
- Title: A Comprehensive Review on Hashtag Recommendation: From Traditional to Deep Learning and Beyond
- Authors: Shubhi Bansal, Kushaan Gowda, Anupama Sureshbabu K, Chirag Kothari, Nagendra Kumar,
- Abstract summary: Hashtags, as a fundamental categorization mechanism, play a pivotal role in enhancing content visibility and user engagement.<n>The development of accurate and robust hashtag recommendation systems remains a complex and evolving research challenge.<n>This review article conducts a systematic analysis of hashtag recommendation systems, examining recent advancements across several dimensions.
- Score: 0.37865171120254354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of user-generated content on social media platforms has precipitated significant challenges in information management, particularly in content organization, retrieval, and discovery. Hashtags, as a fundamental categorization mechanism, play a pivotal role in enhancing content visibility and user engagement. However, the development of accurate and robust hashtag recommendation systems remains a complex and evolving research challenge. Existing surveys in this domain are limited in scope and recency, focusing narrowly on specific platforms, methodologies, or timeframes. To address this gap, this review article conducts a systematic analysis of hashtag recommendation systems, comprehensively examining recent advancements across several dimensions. We investigate unimodal versus multimodal methodologies, diverse problem formulations, filtering strategies, methodological evolution from traditional frequency-based models to advanced deep learning architectures. Furthermore, we critically evaluate performance assessment paradigms, including quantitative metrics, qualitative analyses, and hybrid evaluation frameworks. Our analysis underscores a paradigm shift toward transformer-based deep learning models, which harness contextual and semantic features to achieve superior recommendation accuracy. Key challenges such as data sparsity, cold-start scenarios, polysemy, and model explainability are rigorously discussed, alongside practical applications in tweet classification, sentiment analysis, and content popularity prediction. By synthesizing insights from diverse methodological and platform-specific perspectives, this survey provides a structured taxonomy of current research, identifies unresolved gaps, and proposes future directions for developing adaptive, user-centric recommendation systems.
Related papers
- Beyond Black-Box Benchmarking: Observability, Analytics, and Optimization of Agentic Systems [1.415098516077151]
The rise of agentic AI systems, where agents collaborate to perform diverse tasks, poses new challenges with observing, analyzing and optimizing their behavior.
Traditional evaluation and benchmarking approaches struggle to handle the non-deterministic, context-sensitive, and dynamic nature of these systems.
This paper explores key challenges and opportunities in analyzing and optimizing agentic systems across development, testing, and maintenance.
arXiv Detail & Related papers (2025-03-09T20:02:04Z) - Speculative Decoding and Beyond: An In-Depth Survey of Techniques [4.165029665035158]
Sequential dependencies present a fundamental bottleneck in deploying large-scale autoregressive models.<n>Recent advances in generation-refinement frameworks demonstrate that this trade-off can be significantly mitigated.
arXiv Detail & Related papers (2025-02-27T03:53:45Z) - Bridging the Evaluation Gap: Leveraging Large Language Models for Topic Model Evaluation [0.0]
This study presents a framework for automated evaluation of dynamically evolving topic in scientific literature using Large Language Models (LLMs)<n>The proposed approach harnesses LLMs to measure key quality dimensions, such as coherence, repetitiveness, diversity, and topic-document alignment, without heavy reliance on expert annotators or narrow statistical metrics.
arXiv Detail & Related papers (2025-02-11T08:23:56Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - A Survey of Latent Factor Models in Recommender Systems [0.0]
This survey systematically reviews latent factor models in recommender systems.
The literature is examined through a structured framework covering learning data, model architecture, learning strategies, and optimization techniques.
arXiv Detail & Related papers (2024-05-28T11:28:59Z) - A Survey of Generative Search and Recommendation in the Era of Large Language Models [125.26354486027408]
generative search (retrieval) and recommendation aims to address the matching problem in a generative manner.
Superintelligent generative large language models have sparked a new paradigm in search and recommendation.
arXiv Detail & Related papers (2024-04-25T17:58:17Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
Clustering is a fundamental machine learning task which has been widely studied in the literature.
Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community.
We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering.
arXiv Detail & Related papers (2022-06-15T15:05:13Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
We develop and present a unified architecture of network community-finding methods.
We introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning.
We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
arXiv Detail & Related papers (2021-01-03T02:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.