Characterisation of a quantum bus between two driven qubits
- URL: http://arxiv.org/abs/2503.18772v2
- Date: Mon, 14 Apr 2025 14:25:23 GMT
- Title: Characterisation of a quantum bus between two driven qubits
- Authors: Alberto Hijano, Henri Lyyra, Juha T. Muhonen, Tero T. Heikkilä,
- Abstract summary: We use driven qubits coupled to a harmonic oscillator to implement a $sqrtimathrmSWAP$-gate.<n>We analyze a qubit readout mechanism based on the detection of a shift of the harmonic oscillator's resonance frequency.<n>Our findings guide the implementation of high-fidelity quantum gates in experimental setups.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the use of driven qubits coupled to a harmonic oscillator to implement a $\sqrt{i\mathrm{SWAP}}$-gate. By dressing the qubits through an external driving field, the qubits and the harmonic oscillator can be selectively coupled, leading to effective qubit-qubit interactions. We analyze a qubit readout mechanism based on the detection of a shift of the harmonic oscillator's resonance frequency, and demonstrate that when coupled to low-frequency resonators, dressed qubits provide a more robust readout than bare qubits in the presence of damping and thermal effects. Furthermore, we study the impact of various system parameters on the fidelity of the two-qubit gate, identifying an optimal range for quantum computation. Our findings guide the implementation of high-fidelity quantum gates in experimental setups, for example those employing nanoscale mechanical resonators.
Related papers
- Optimizing the frequency positioning of tunable couplers in a circuit QED processor to mitigate spectator effects on quantum operations [0.0]
We experimentally optimize the frequency of flux-tunable couplers in a superconducting quantum processor to minimize the impact of spectator transmons.<n>We adapt a popular transmon-like tunable-coupling element, achieving high-fidelity, low-leakage controlled-$Z$ gates with unipolar, fast-adiabatic pulsing only on the coupler.
arXiv Detail & Related papers (2025-03-17T14:41:05Z) - A Superconducting Qubit-Resonator Quantum Processor with Effective All-to-All Connectivity [44.72199649564072]
This architecture can be used as a test-bed for algorithms that benefit from high connectivity.<n>We show that the central resonator can be used as a computational element.<n>We achieve a genuinely multi-qubit entangled Greenberger-Horne-Zeilinger (GHZ) state over all six qubits with a readout-error mitigated fidelity of $0.86$.
arXiv Detail & Related papers (2025-03-13T21:36:18Z) - Suppressing spurious transitions using spectrally balanced pulse [18.9170657325725]
In superconducting qubits, parasitic interactions can severely limit the performance of quantum gates.
We introduce a pulse-shaping technique that uses spectrally balanced microwave pulses to suppress undesired transitions.
arXiv Detail & Related papers (2025-02-14T12:27:36Z) - Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Coupler microwave-activated controlled phase gate on fluxonium qubits [32.73124984242397]
A tunable coupler typically includes a nonlinear element, such as a SQUID, which is used to tune the resonance frequency of an LC circuit connecting two qubits.
Here we propose a complimentary approach where instead of tuning the resonance frequency of the tunable coupler by applying a quasistatic control signal, we excite by microwave the degree of freedom associated with the coupler itself.
arXiv Detail & Related papers (2023-02-20T07:51:04Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Probing two-qubit capacitive interactions beyond bilinear regime using
dual Hamiltonian parameter estimations [0.0]
We report the simultaneous operation and two-qubit coupling measurement of a pair of two-electron spin qubits in a GaAs quadruple quantum dot array.
Coherent Rabi oscillations of both qubits are achieved by continuously tuning the drive frequency.
By state conditional exchange oscillation measurements, we also observe strong two-qubit capacitive interaction.
arXiv Detail & Related papers (2022-06-09T07:49:07Z) - Strong parametric dispersive shifts in a statically decoupled
multi-qubit cavity QED system [0.4915375958667782]
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing.
Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID.
We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically.
arXiv Detail & Related papers (2021-03-16T18:46:57Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.