Optimizing the frequency positioning of tunable couplers in a circuit QED processor to mitigate spectator effects on quantum operations
- URL: http://arxiv.org/abs/2503.13225v1
- Date: Mon, 17 Mar 2025 14:41:05 GMT
- Title: Optimizing the frequency positioning of tunable couplers in a circuit QED processor to mitigate spectator effects on quantum operations
- Authors: S. Vallés-Sanclemente, T. H. F. Vroomans, T. R. van Abswoude, F. Brulleman, T. Stavenga, S. L. M. van der Meer, Y. Xin, A. Lawrence, V. Singh, M. A. Rol, L. DiCarlo,
- Abstract summary: We experimentally optimize the frequency of flux-tunable couplers in a superconducting quantum processor to minimize the impact of spectator transmons.<n>We adapt a popular transmon-like tunable-coupling element, achieving high-fidelity, low-leakage controlled-$Z$ gates with unipolar, fast-adiabatic pulsing only on the coupler.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally optimize the frequency of flux-tunable couplers in a superconducting quantum processor to minimize the impact of spectator transmons during quantum operations (single-qubit gates, two-qubit gates and readout) on other transmons. We adapt a popular transmon-like tunable-coupling element, achieving high-fidelity, low-leakage controlled-$Z$ gates with unipolar, fast-adiabatic pulsing only on the coupler. We demonstrate the ability of the tunable coupler to null residual $ZZ$ coupling as well as exchange couplings in the one- and two-excitation manifolds. However, the nulling of these coherent interactions is not simultaneous, prompting the exploration of tradeoffs. We present experiments pinpointing spectator effects on specific quantum operations. We also study the combined effect on the three types of operations using repeated quantum parity measurements.
Related papers
- Suppressing spurious transitions using spectrally balanced pulse [18.9170657325725]
In superconducting qubits, parasitic interactions can severely limit the performance of quantum gates.<n>We introduce a pulse-shaping technique that uses spectrally balanced microwave pulses to suppress undesired transitions.
arXiv Detail & Related papers (2025-02-14T12:27:36Z) - Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Implementing two-qubit gates at the quantum speed limit [33.51056531486263]
We experimentally demonstrate commonly used two-qubit gates at nearly the fastest possible speed.
We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method.
We expect our method to offer significant speedups for non-native two-qubit gates.
arXiv Detail & Related papers (2022-06-15T18:00:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
We show a practically approach for complete cancellation of residual $ZZ$ interaction between fixed-frequency transmon qubits.
We verify the cancellation performance by measuring vanishing two-qubit entangling phases and $ZZ$ correlations.
Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers.
arXiv Detail & Related papers (2021-11-26T02:04:49Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.