論文の概要: Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2503.18784v1
- Date: Mon, 24 Mar 2025 15:32:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:32.128666
- Title: Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection
- Title(参考訳): 摂動ロバスト性を利用したアウト・オブ・ディストリビューション検出
- Authors: Wenxi Chen, Raymond A. Yeh, Shaoshuai Mou, Yan Gu,
- Abstract要約: 本稿では, インディストリビューション(IND)インプットよりも, 摂動下でのOODインプットの予測信頼度が高いという知見に基づいて, ポストホック法であるPRO(Perturbation-Rectified OOD Detection)を提案する。
CIFAR-10モデルでは、POPは、最先端の手法と比較して、FPR@95において10%以上の削減を実現し、近似OOD入力を効果的に検出する。
- 参考スコア(独自算出の注目度): 15.184096796229115
- License:
- Abstract: Out-of-distribution (OOD) detection is the task of identifying inputs that deviate from the training data distribution. This capability is essential for safely deploying deep computer vision models in open-world environments. In this work, we propose a post-hoc method, Perturbation-Rectified OOD detection (PRO), based on the insight that prediction confidence for OOD inputs is more susceptible to reduction under perturbation than in-distribution (IND) inputs. Based on the observation, we propose an adversarial score function that searches for the local minimum scores near the original inputs by applying gradient descent. This procedure enhances the separability between IND and OOD samples. Importantly, the approach improves OOD detection performance without complex modifications to the underlying model architectures. We conduct extensive experiments using the OpenOOD benchmark~\cite{yang2022openood}. Our approach further pushes the limit of softmax-based OOD detection and is the leading post-hoc method for small-scale models. On a CIFAR-10 model with adversarial training, PRO effectively detects near-OOD inputs, achieving a reduction of more than 10\% on FPR@95 compared to state-of-the-art methods.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出は、トレーニングデータ分布から逸脱した入力を識別するタスクである。
この能力は、オープンワールド環境でディープコンピュータビジョンモデルを安全に展開するために不可欠である。
本研究では,OOD入力に対する予測信頼度が,イン・ディストリビューション(IND)入力よりもイン・ディストリビューション(In-distribution, IND)入力の減少による影響を受けやすいという知見に基づいて,ポスト・ホック法であるPerturbation-Rectified OOD Detection (PRO)を提案する。
観測結果に基づいて,勾配降下を適用して,元の入力付近の局所最小スコアを探索する逆スコア関数を提案する。
この方法により、INDとOODの分離性が向上する。
重要なのは、基礎となるモデルアーキテクチャに複雑な変更を加えることなく、OOD検出性能を向上させることだ。
我々は OpenOOD ベンチマーク~\cite{yang2022openood} を用いて広範な実験を行う。
提案手法は,ソフトマックスを用いたOOD検出の限界をさらに推し進め,小型モデルにおける先進的なポストホック法である。
CIFAR-10 モデルでは、POP は近OOD 入力を効果的に検出し、FPR@95 では最先端の手法に比べて 10 % 以上削減できる。
関連論文リスト
- SeTAR: Out-of-Distribution Detection with Selective Low-Rank Approximation [5.590633742488972]
ニューラルネットワークの安全なデプロイには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
トレーニング不要なOOD検出手法であるSeTARを提案する。
SeTARは、単純なグリーディ探索アルゴリズムを用いて、モデルの重量行列のポストホックな修正によるOOD検出を強化する。
私たちの研究は、OOD検出のためのスケーラブルで効率的なソリューションを提供し、この分野で新しい最先端を設定します。
論文 参考訳(メタデータ) (2024-06-18T13:55:13Z) - Fast Decision Boundary based Out-of-Distribution Detector [7.04686607977352]
アウト・オブ・ディストリビューション(OOD)検出は、AIシステムの安全なデプロイに不可欠である。
既存の特徴空間法は有効であるが、しばしば計算上のオーバーヘッドを生じさせる。
補助モデルを用いない計算効率の良いOOD検出器を提案する。
論文 参考訳(メタデータ) (2023-12-15T19:50:32Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - OpenOOD v1.5: Enhanced Benchmark for Out-of-Distribution Detection [82.85303878718207]
アウト・オブ・ディストリビューション(OOD)検出は、オープンワールド・インテリジェントシステムの信頼性の高い運用に不可欠である。
本稿では,OOD検出手法の正確かつ標準化された評価を実現するために,OpenOOD v1.5を提案する。
論文 参考訳(メタデータ) (2023-06-15T17:28:00Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
本稿では,分布内データとOODデータ間のモデル出力の差を解析するための新しい側面を紹介する。
本稿では,分布検出のポストホックアウトのための新しい手法であるLINe( Leveraging Important Neurons)を提案する。
論文 参考訳(メタデータ) (2023-03-24T13:49:05Z) - OpenOOD: Benchmarking Generalized Out-of-Distribution Detection [60.13300701826931]
アウト・オブ・ディストリビューション(OOD)検出は、安全クリティカルな機械学習アプリケーションにとって不可欠である。
この分野では現在、統一的で厳格に定式化され、包括的なベンチマークが欠けている。
関連フィールドで開発された30以上のメソッドを実装したOpenOODという,統一的で構造化されたシステムを構築します。
論文 参考訳(メタデータ) (2022-10-13T17:59:57Z) - How Useful are Gradients for OOD Detection Really? [5.459639971144757]
Out of Distribution(OOD)検出は、リアルタイムアプリケーションに高性能な機械学習モデルをデプロイする上で重要な課題である。
OOD検出のための勾配法を詳細に解析し,比較する。
本稿では,OOD検出における性能と計算効率の両面において,従来のベースラインよりも向上した汎用的,非段階的なOOD検出手法を提案する。
論文 参考訳(メタデータ) (2022-05-20T21:10:05Z) - ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining [51.19164318924997]
インフォメーション・アウトリエ・マイニングによるアドリアトレーニングは、OOD検出の堅牢性を向上させる。
ATOMは,古典的,敵対的なOOD評価タスクの幅広いファミリーの下で,最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-26T20:58:05Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。