End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control
- URL: http://arxiv.org/abs/2308.01674v4
- Date: Thu, 1 Aug 2024 17:41:27 GMT
- Title: End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control
- Authors: Daniel Mayfrank, Alexander Mitsos, Manuel Dahmen,
- Abstract summary: We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
- Score: 45.84205238554709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: (Economic) nonlinear model predictive control ((e)NMPC) requires dynamic models that are sufficiently accurate and computationally tractable. Data-driven surrogate models for mechanistic models can reduce the computational burden of (e)NMPC; however, such models are typically trained by system identification for maximum prediction accuracy on simulation samples and perform suboptimally in (e)NMPC. We present a method for end-to-end reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC. We apply our method to two applications derived from an established nonlinear continuous stirred-tank reactor model. The controller performance is compared to that of (e)NMPCs utilizing models trained using system identification, and model-free neural network controllers trained using reinforcement learning. We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC, and that, in contrast to the neural network controllers, the (e)NMPC controllers can react to changes in the control setting without retraining.
Related papers
- Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
We propose a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model.
The method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer.
arXiv Detail & Related papers (2024-06-04T17:15:25Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Data-Driven Model Reduction and Nonlinear Model Predictive Control of an
Air Separation Unit by Applied Koopman Theory [45.84205238554709]
We propose a data-driven reduction strategy to generate a low-order control model of an air separation unit.
We present an NMPC implementation that uses derivative tailored to the fixed block structure of reduced Koopman models.
Our reduction approach with tailored NMPC implementation enables real-time NMPC of an ASU at an average CPU time decrease by 98 %.
arXiv Detail & Related papers (2023-09-11T11:18:16Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Online Dynamics Learning for Predictive Control with an Application to
Aerial Robots [3.673994921516517]
Even though prediction models can be learned and applied to model-based controllers, these models are often learned offline.
In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure.
We propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment.
arXiv Detail & Related papers (2022-07-19T15:51:25Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - On Training and Evaluation of Neural Network Approaches for Model
Predictive Control [9.8918553325509]
This paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks.
The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers.
arXiv Detail & Related papers (2020-05-08T15:37:55Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.