Towards Responsible AI Music: an Investigation of Trustworthy Features for Creative Systems
- URL: http://arxiv.org/abs/2503.18814v1
- Date: Mon, 24 Mar 2025 15:54:47 GMT
- Title: Towards Responsible AI Music: an Investigation of Trustworthy Features for Creative Systems
- Authors: Jacopo de Berardinis, Lorenzo Porcaro, Albert Meroño-Peñuela, Angelo Cangelosi, Tess Buckley,
- Abstract summary: Generative AI is radically changing the creative arts, by fundamentally transforming the way we create and interact with cultural artefacts.<n>This technology also raises ethical, societal, and legal concerns.<n>Key among these are the potential displacement of human creativity, copyright infringement stemming from vast training datasets, and the lack of transparency, explainability, and fairness mechanisms.
- Score: 1.976667849039851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI is radically changing the creative arts, by fundamentally transforming the way we create and interact with cultural artefacts. While offering unprecedented opportunities for artistic expression and commercialisation, this technology also raises ethical, societal, and legal concerns. Key among these are the potential displacement of human creativity, copyright infringement stemming from vast training datasets, and the lack of transparency, explainability, and fairness mechanisms. As generative systems become pervasive in this domain, responsible design is crucial. Whilst previous work has tackled isolated aspects of generative systems (e.g., transparency, evaluation, data), we take a comprehensive approach, grounding these efforts within the Ethics Guidelines for Trustworthy Artificial Intelligence produced by the High-Level Expert Group on AI appointed by the European Commission - a framework for designing responsible AI systems across seven macro requirements. Focusing on generative music AI, we illustrate how these requirements can be contextualised for the field, addressing trustworthiness across multiple dimensions and integrating insights from the existing literature. We further propose a roadmap for operationalising these contextualised requirements, emphasising interdisciplinary collaboration and stakeholder engagement. Our work provides a foundation for designing and evaluating responsible music generation systems, calling for collaboration among AI experts, ethicists, legal scholars, and artists. This manuscript is accompanied by a website: https://amresearchlab.github.io/raim-framework/.
Related papers
- AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.<n>The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Towards a Practical Ethics of Generative AI in Creative Production Processes [0.0]
This paper introduces a framework for addressing ethical challenges in creative production processes, such as the Double Diamond design model.<n>We draw on six major ethical theories - virtue ethics, deontology, utilitarianism, contract theory, care ethics, and existentialism.<n>We argue that by adopting a playful and exploratory approach to AI, designers can responsibly harness the potential of AI technologies.
arXiv Detail & Related papers (2024-11-18T11:07:26Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - Toward an Artist-Centred AI [0.0]
This paper contextualizes the notions of suitability and desirability of principles, practices, and tools related to the use of AI in the arts.
It was composed by examining the challenges that AI poses to art production, distribution, consumption, and monetization.
arXiv Detail & Related papers (2024-04-13T09:43:23Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
The EU has recently issued several publications emphasizing the necessity of trust in AI.
This highlights the urgent need for international regulation.
This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI.
arXiv Detail & Related papers (2024-03-11T17:01:13Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Designing Participatory AI: Creative Professionals' Worries and
Expectations about Generative AI [8.379286663107845]
Generative AI, i.e., the group of technologies that automatically generate visual or written content based on text prompts, has undergone a leap in complexity and become widely available within just a few years.
This paper presents the results of a qualitative survey investigating how creative professionals think about generative AI.
arXiv Detail & Related papers (2023-03-15T20:57:03Z) - Pathway to Future Symbiotic Creativity [76.20798455931603]
We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist to a Machine artist in its own right.
In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations.
We propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle.
arXiv Detail & Related papers (2022-08-18T15:12:02Z) - Human in the Loop for Machine Creativity [0.0]
We conceptualize existing and future human-in-the-loop (HITL) approaches for creative applications.
We examine and speculate on long term implications for models, interfaces, and machine creativity.
We envision multimodal HITL processes, where texts, visuals, sounds, and other information are coupled together, with automated analysis of humans and environments.
arXiv Detail & Related papers (2021-10-07T15:42:18Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.