論文の概要: Statistical Proof of Execution (SPEX)
- arxiv url: http://arxiv.org/abs/2503.18899v1
- Date: Mon, 24 Mar 2025 17:13:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:13.749506
- Title: Statistical Proof of Execution (SPEX)
- Title(参考訳): 実行の統計的証明(SPEX)
- Authors: Michele Dallachiesa, Antonio Pitasi, David Pinger, Josh Goodbody, Luis Vaello,
- Abstract要約: ML/AI推論を計画とガイダンスに広く採用することにより、現実のアプリケーションはますます自動化された意思決定を取り入れている。
本研究では,自律的意思決定における検証可能なコンピューティングの必要性の増大について検討する。
我々は,既存の手法よりもはるかに高速で,コスト効率が高く,簡易なサンプリングベースプロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Many real-world applications are increasingly incorporating automated decision-making, driven by the widespread adoption of ML/AI inference for planning and guidance. This study examines the growing need for verifiable computing in autonomous decision-making. We formalize the problem of verifiable computing and introduce a sampling-based protocol that is significantly faster, more cost-effective, and simpler than existing methods. Furthermore, we tackle the challenges posed by non-determinism, proposing a set of strategies to effectively manage common scenarios.
- Abstract(参考訳): 多くの現実世界のアプリケーションは、計画とガイダンスにML/AI推論が広く採用されていることから、自動意思決定を取り入れている。
本研究では,自律的意思決定における検証可能なコンピューティングの必要性の増大について検討する。
検証可能なコンピューティングの問題を形式化し,既存の手法よりもはるかに高速で,コスト効率が高く,シンプルなサンプリングベースのプロトコルを導入する。
さらに,非決定主義がもたらす課題に対処し,共通シナリオを効果的に管理するための一連の戦略を提案する。
関連論文リスト
- RLER-TTE: An Efficient and Effective Framework for En Route Travel Time Estimation with Reinforcement Learning [5.4674463400564886]
En Route Travel Time Estimationは、走行経路から運転パターンを学習し、迅速かつ正確なリアルタイム予測を実現することを目的としている。
既存の手法は、実世界の交通システムの複雑さとダイナミズムを無視し、結果としてリアルタイムシナリオにおける効率と正確性に大きなギャップが生じる。
本稿では,ER-TTEの経路実装を再定義し,高効率かつ効率的な予測を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-26T11:49:34Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Quantifying and Explaining Machine Learning Uncertainty in Predictive
Process Monitoring: An Operations Research Perspective [0.0]
本稿では,情報システムと人工知能を統合した総合的多段階機械学習手法を提案する。
提案したフレームワークは、データ駆動推定の無視など、既存のソリューションの共通的な制限を十分に解決する。
本手法では,Shapley Additive Explanationsの局所的およびグローバル的変異とともに,時間間隔予測を生成するために,Quantile Regression Forestsを用いている。
論文 参考訳(メタデータ) (2023-04-13T11:18:22Z) - Distributional Reinforcement Learning for Scheduling of (Bio)chemical
Production Processes [0.0]
強化学習(Reinforcement Learning, RL)は、最近、プロセスシステム工学と制御コミュニティから大きな注目を集めている。
本稿では,生産スケジューリング問題に共通して課される優先的制約と解離的制約に対処するRL手法を提案する。
論文 参考訳(メタデータ) (2022-03-01T17:25:40Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
複雑度尺度であるDecision-Estimation Coefficientは,サンプル効率のインタラクティブ学習に必要かつ十分であることが証明された。
統合アルゴリズム設計原則であるE2Dは、教師付き推定のための任意のアルゴリズムを、意思決定のためのオンラインアルゴリズムに変換する。
論文 参考訳(メタデータ) (2021-12-27T02:53:44Z) - Probabilistic Loss and its Online Characterization for Simplified
Decision Making Under Uncertainty [13.807859854345834]
標準近似を取り除き, 従来抑制されていた変動要因をすべて考慮し, 意思決定機構全体を拡張した。
この枠組みを用いた簡略化が特定の簡略化技術に与える影響をオンライン上で特徴づける。
論文 参考訳(メタデータ) (2021-05-12T17:02:01Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。