Phase transitions in a non-Hermitian Su-Schrieffer-Heeger model via Krylov spread complexity
- URL: http://arxiv.org/abs/2503.18936v2
- Date: Mon, 14 Apr 2025 14:05:53 GMT
- Title: Phase transitions in a non-Hermitian Su-Schrieffer-Heeger model via Krylov spread complexity
- Authors: E. Medina-Guerra, I. V. Gornyi, Yuval Gefen,
- Abstract summary: We investigate phase transitions in a non-Hermitian Su-Schrieffer-Heeger (SSH) model with an imaginary chemical potential via Krylov spread complexity and Krylov fidelity.
- Score: 0.6437284704257459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate phase transitions in a non-Hermitian Su-Schrieffer-Heeger (SSH) model with an imaginary chemical potential via Krylov spread complexity and Krylov fidelity. The spread witnesses the $\mathcal{PT}$-transition for the non-Hermitian Bogoliubov vacuum of the SSH Hamiltonian, where the spectrum goes from purely real to complex (oscillatory dynamics to damped oscillations). In addition, it also witnesses the transition occurring in the $\mathcal{PT}$-broken phase, where the spectrum goes from complex to purely imaginary (damped oscillations to sheer decay). For a purely imaginary spectrum, the Krylov spread fidelity, which measures how the time-dependent spread reaches its stationary state value, serves as a probe of previously undetected dynamical phase transitions.
Related papers
- Phase driven unconventional superradiance phase transition in non-Hermitian cascaded quantum Rabi cavities [0.0]
This study investigates phase-driven symmetry breaking leading to superradiance phase transitions in non-Hermitian quantum Rabi cavities.
We analytically derive the superradiance phase boundary, validated by observables.
We identify phase-driven first- and second-order superradiance phase transitions, focusing on the quantum criticality of the second-order transition.
arXiv Detail & Related papers (2024-06-24T12:13:50Z) - Spread complexity and localization in $\mathcal{PT}$-symmetric systems [0.0]
We investigate wave function spreading in $mathcalPT$-symmetric quantum systems using spread complexity and spread entropy.
We find that in the $mathcalPT$-broken phase, it becomes localized on one edge of the tight-binding lattice.
arXiv Detail & Related papers (2024-06-05T18:00:00Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Non-Hermitian Stark Many-Body Localization [0.0]
We investigate a one-dimensional, non-reciprocal, interacting hard-core boson model under a Stark potential with tail curvature.
We numerically confirm that the critical points of spectral real-complex (RC) transition and many-body localization (MBL) phase transition are not identical.
This work provides a useful reference for further research on phase transitions in disorder-free interacting non-Hermitian systems.
arXiv Detail & Related papers (2023-05-16T12:11:43Z) - Phase transitions in non-Hermitian superlattices [0.0]
We investigate the energy spectral phase transitions arising in one-dimensional superlattices under an imaginary gauge field.
It is shown that in models displaying nearly flat bands a smooth phase transition, from quasi entirely real to complex energies, can be observed as the imaginary gauge field is increased.
arXiv Detail & Related papers (2023-04-16T06:08:38Z) - Complex Berry phase and imperfect non-Hermitian phase transitions [6.816938564119971]
spectral phase transitions from an entirely real energy spectrum to a complex spectrum can be observed in classical and quantum systems.
When the system is slowly and periodically cycled, the phase transition can become smooth, i.e. imperfect.
This is illustrated by considering the spectral phase transition of the Wannier-Stark ladders in a PT-symmetric class of two-band non-Hermitian lattices.
arXiv Detail & Related papers (2023-02-04T06:58:31Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Localization and topological transitions in non-Hermitian quasiperiodic
lattices [1.6530012863603747]
We investigate the localization and topological transitions in a one-dimensional non-Hermitian quasiperiodic lattice.
For interacting spinless fermions, we demonstrate that the extended phase and the many-body localized phase can be identified by the entanglement entropy of eigenstates.
arXiv Detail & Related papers (2021-01-14T08:56:18Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.