Spread complexity and localization in $\mathcal{PT}$-symmetric systems
- URL: http://arxiv.org/abs/2406.03524v1
- Date: Wed, 5 Jun 2024 18:00:00 GMT
- Title: Spread complexity and localization in $\mathcal{PT}$-symmetric systems
- Authors: Aranya Bhattacharya, Rathindra Nath Das, Bidyut Dey, Johanna Erdmenger,
- Abstract summary: We investigate wave function spreading in $mathcalPT$-symmetric quantum systems using spread complexity and spread entropy.
We find that in the $mathcalPT$-broken phase, it becomes localized on one edge of the tight-binding lattice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework for investigating wave function spreading in $\mathcal{PT}$-symmetric quantum systems using spread complexity and spread entropy. We consider a tight-binding chain with complex on-site potentials at the boundary sites. In the $\mathcal{PT}$-unbroken phase, the wave function is delocalized. We find that in the $\mathcal{PT}$-broken phase, it becomes localized on one edge of the tight-binding lattice. This localization is a realization of the non-Hermitian skin effect. Localization in the $\mathcal{PT}$-broken phase is observed both in the lattice chain basis and the Krylov basis. Spread entropy, entropic complexity, and a further measure that we term the Krylov inverse participation ratio probe the dynamics of wave function spreading and quantify the strength of localization probed in the Krylov basis. The number of Krylov basis vectors required to store the information of the state reduces with the strength of localization. Our results demonstrate how measures in Krylov space can be used to characterize the non-hermitian skin effect and its localization phase transition.
Related papers
- Quantum Gibbs states are locally Markovian [1.9643748953805944]
We show that for any Hamiltonian with a bounded interaction degree, the quantum Gibbs state is locally Markov at arbitrary temperature.
We introduce a regularization scheme for imaginary-time-evolved operators at arbitrarily low temperatures.
arXiv Detail & Related papers (2025-04-03T01:54:42Z) - Probing the localization effects in Krylov basis [0.0]
Krylov complexity (K-complexity) is a measure of quantum state complexity that minimizes wavefunction spreading across all the possible bases.
In this work, K-complexity and Arnoldi coefficients are applied to probe a variety of localization phenomena in the quantum kicked rotor system.
arXiv Detail & Related papers (2025-03-30T06:29:12Z) - Phase transitions in a non-Hermitian Su-Schrieffer-Heeger model via Krylov spread complexity [0.6437284704257459]
We investigate phase transitions in a non-Hermitian Su-Schrieffer-Heeger (SSH) model with an imaginary chemical potential via Krylov spread complexity and Krylov fidelity.
arXiv Detail & Related papers (2025-03-24T17:56:56Z) - Dynamically emergent correlations in bosons via quantum resetting [0.0]
We study the nonequilibrium stationary state (NESS) induced by quantum resetting of a system of $N$ noninteracting bosons in a harmonic trap.
We fully characterize the steady state by analytically computing several physical observables such as the average density, extreme value statistics, order and gap statistics.
This is a rare example of a strongly correlated quantum many-body NESS where various observables can be exactly computed.
arXiv Detail & Related papers (2024-07-29T18:00:35Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Diagnosing non-Hermitian Many-Body Localization and Quantum Chaos via Singular Value Decomposition [0.0]
Strong local disorder in interacting quantum spin chains can turn delocalized eigenmodes into localized eigenstates.
This is accompanied by distinct spectral statistics: chaotic for the delocalized phase and integrable for the localized phase.
We ask whether random dissipation (without random disorder) can induce chaotic or localized behavior in an otherwise integrable system.
arXiv Detail & Related papers (2023-11-27T19:00:01Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Detecting delocalization-localization transitions from full density
distributions [0.0]
Characterizing the delocalization transition in closed quantum systems with a many-body localized phase is a key open question in the field of nonequilibrium physics.
We study its scaling behavior across delocalozation transitions and identify critical points from scaling collapses of numerical data.
We observe a distinctively different scaling behavior in the case of interacting fermions with random disorder consistent with a Kosterlitz-Thouless transition.
arXiv Detail & Related papers (2021-05-21T21:39:27Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.