A Survey on Structured State Space Sequence (S4) Models
- URL: http://arxiv.org/abs/2503.18970v1
- Date: Sat, 22 Mar 2025 01:55:32 GMT
- Title: A Survey on Structured State Space Sequence (S4) Models
- Authors: Shriyank Somvanshi, Md Monzurul Islam, Mahmuda Sultana Mimi, Sazzad Bin Bashar Polock, Gaurab Chhetri, Subasish Das,
- Abstract summary: Recent advancements in sequence modeling have led to the emergence of Structured State Space Models (SSMs)<n>SSMs leverage structured recurrence and state-space representations to achieve superior long-sequence processing with linear or near-linear complexity.<n>This survey serves as a structured guide for researchers and practitioners, detailing the advancements, trade-offs, and future directions of SSM-based architectures in AI and deep learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in sequence modeling have led to the emergence of Structured State Space Models (SSMs) as an efficient alternative to Recurrent Neural Networks (RNNs) and Transformers, addressing challenges in long-range dependency modeling and computational efficiency. While RNNs suffer from vanishing gradients and sequential inefficiencies, and Transformers face quadratic complexity, SSMs leverage structured recurrence and state-space representations to achieve superior long-sequence processing with linear or near-linear complexity. This survey provides a comprehensive review of SSMs, tracing their evolution from the foundational S4 model to its successors like Mamba, Simplified Structured State Space Sequence Model (S5), and Jamba, highlighting their improvements in computational efficiency, memory optimization, and inference speed. By comparing SSMs with traditional sequence models across domains such as natural language processing (NLP), speech recognition, vision, and time-series forecasting, we demonstrate their advantages in handling long-range dependencies while reducing computational overhead. Despite their potential, challenges remain in areas such as training optimization, hybrid modeling, and interpretability. This survey serves as a structured guide for researchers and practitioners, detailing the advancements, trade-offs, and future directions of SSM-based architectures in AI and deep learning.
Related papers
- Leveraging State Space Models in Long Range Genomics [1.130790932059036]
Long-range dependencies are critical for understanding genomic structure and function, yet most conventional methods struggle with them.
We explore State Space Models (SSMs) as a promising alternative by benchmarking two SSM-inspired architectures on long-range genomics modeling tasks.
SSMs match transformer performance and exhibit impressive zero-shot extrapolation across multiple tasks, handling contexts 10 to 100 times longer than those seen during training.
arXiv Detail & Related papers (2025-04-07T18:34:06Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
arXiv Detail & Related papers (2024-07-19T11:12:08Z) - SMR: State Memory Replay for Long Sequence Modeling [19.755738298836526]
This paper proposes a novel non-recursive non-uniform sample processing strategy to overcome compatibility limitations in parallel convolutional computation.
We introduce State Memory Replay (SMR), which utilizes learnable memories to adjust the current state with multi-step information for generalization at sampling points different from those in the training data.
Experiments on long-range modeling tasks in autoregressive language modeling and Long Range Arena demonstrate the general effectiveness of the SMR mechanism for a series of SSM models.
arXiv Detail & Related papers (2024-05-27T17:53:32Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences.
We develop a new parameterization scheme, called HOPE, for LTI systems that utilize Markov parameters within Hankel operators.
Our new parameterization endows the SSM with non-decaying memory within a fixed time window, which is empirically corroborated by a sequential CIFAR-10 task with padded noise.
arXiv Detail & Related papers (2024-05-22T20:20:14Z) - State Space Models as Foundation Models: A Control Theoretic Overview [3.3222241150972356]
In recent years, there has been a growing interest in integrating linear state-space models (SSM) in deep neural network architectures.
This paper is intended as a gentle introduction to SSM-based architectures for control theorists.
It provides a systematic review of the most successful SSM proposals and highlights their main features from a control theoretic perspective.
arXiv Detail & Related papers (2024-03-25T16:10:47Z) - Theoretical Foundations of Deep Selective State-Space Models [13.971499161967083]
Deep SSMs demonstrate outstanding performance across a diverse set of domains.
Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states.
We show that when random linear recurrences are equipped with simple input-controlled transitions, then the hidden state is provably a low-dimensional projection of a powerful mathematical object.
arXiv Detail & Related papers (2024-02-29T11:20:16Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5 is an efficient variant for long-rangetemporal modeling.
It significantly outperforms Transformers and ConvNISTTM on a long horizon Moving-Lab experiment while training 3X faster than ConvLSTM and generating samples 400X faster than Transformers.
arXiv Detail & Related papers (2023-10-30T16:11:06Z) - State space models can express n-gram languages [51.823427608117626]
We build state space language models that can solve the next-word prediction task for languages generated from n-gram rules.
Our proof shows how SSMs can encode n-gram rules using new theoretical results on their capacity.
We conduct experiments with a small dataset generated from n-gram rules to show how our framework can be applied to SSMs and RNNs obtained through gradient-based optimization.
arXiv Detail & Related papers (2023-06-20T10:41:23Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.