論文の概要: Video-ColBERT: Contextualized Late Interaction for Text-to-Video Retrieval
- arxiv url: http://arxiv.org/abs/2503.19009v1
- Date: Mon, 24 Mar 2025 17:51:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:55:48.511046
- Title: Video-ColBERT: Contextualized Late Interaction for Text-to-Video Retrieval
- Title(参考訳): Video-ColBERT: テキスト対ビデオ検索のためのコンテキスト付き遅延インタラクション
- Authors: Arun Reddy, Alexander Martin, Eugene Yang, Andrew Yates, Kate Sanders, Kenton Murray, Reno Kriz, Celso M. de Melo, Benjamin Van Durme, Rama Chellappa,
- Abstract要約: Video-ColBERTは、クエリとビデオ間の微粒な類似性評価のためのシンプルで効率的なメカニズムを導入している。
このインタラクションとトレーニングのパラダイムは、ビデオコンテンツをエンコードするための、強い個人的かつ互換性のある表現につながることが分かっています。
これらの表現は、他のバイエンコーダ法と比較して、一般的なテキスト・ビデオ検索ベンチマークのパフォーマンスが向上する。
- 参考スコア(独自算出の注目度): 90.72791786676753
- License:
- Abstract: In this work, we tackle the problem of text-to-video retrieval (T2VR). Inspired by the success of late interaction techniques in text-document, text-image, and text-video retrieval, our approach, Video-ColBERT, introduces a simple and efficient mechanism for fine-grained similarity assessment between queries and videos. Video-ColBERT is built upon 3 main components: a fine-grained spatial and temporal token-wise interaction, query and visual expansions, and a dual sigmoid loss during training. We find that this interaction and training paradigm leads to strong individual, yet compatible, representations for encoding video content. These representations lead to increases in performance on common text-to-video retrieval benchmarks compared to other bi-encoder methods.
- Abstract(参考訳): 本研究では,テキスト・ツー・ビデオ検索(T2VR)の問題に取り組む。
テキスト文書,テキストイメージ,テキストビデオ検索における遅延インタラクション技術の成功に触発されて,我々のアプローチであるVideo-ColBERTは,クエリとビデオ間の詳細な類似性評価のためのシンプルかつ効率的なメカニズムを導入している。
Video-ColBERTは3つの主要なコンポーネントの上に構築されている。
このインタラクションとトレーニングのパラダイムは、ビデオコンテンツをエンコードするための、強い個人的かつ互換性のある表現につながることが分かっています。
これらの表現は、他のバイエンコーダ法と比較して、一般的なテキスト・ビデオ検索ベンチマークのパフォーマンスが向上する。
関連論文リスト
- NAVERO: Unlocking Fine-Grained Semantics for Video-Language Compositionality [52.08735848128973]
本研究では,映像言語モデル(VidL)のオブジェクト間の合成,属性,行動,それらの関係を理解する能力について検討する。
負のテキストを付加したビデオテキストデータを用いて合成理解を向上させるNAVEROと呼ばれるトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-08-18T15:27:06Z) - SHE-Net: Syntax-Hierarchy-Enhanced Text-Video Retrieval [11.548061962976321]
我々は新しい構文階層強化テキストビデオ検索法(SHE-Net)を提案する。
まず、よりきめ細かい視覚コンテンツの統合を容易にするために、テキスト記述の文法構造を明らかにするテキスト構文階層を用いる。
第2に、マルチモーダルな相互作用とアライメントをさらに強化するために、構文階層を利用して類似性計算を導出する。
論文 参考訳(メタデータ) (2024-04-22T10:23:59Z) - In-Style: Bridging Text and Uncurated Videos with Style Transfer for
Text-Video Retrieval [72.98185525653504]
トレーニング中は、テキストクエリと未処理のWebビデオのみを併用する、未修正データによる新しい設定、テキストビデオ検索を提案する。
一般化を改善するために、複数のテキストスタイルで1つのモデルを訓練できることを示す。
提案手法の利点を実証するため,複数のデータセットを対象とした検索性能のモデルの評価を行った。
論文 参考訳(メタデータ) (2023-09-16T08:48:21Z) - Fine-grained Text-Video Retrieval with Frozen Image Encoders [10.757101644990273]
2段階のテキストビデオ検索アーキテクチャであるCrossTVRを提案する。
第1段階では,既存のTVR手法とコサイン類似性ネットワークを利用して,効率的なテキスト/ビデオ候補選択を行う。
第2段階では,空間次元と時間次元の細粒度マルチモーダル情報をキャプチャするビデオテキストクロスアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2023-07-14T02:57:00Z) - Weakly Supervised Video Representation Learning with Unaligned Text for
Sequential Videos [39.42509966219001]
本稿では,時間レベルのテキスト・ビデオの正確なアライメントが提供されないような逐次的ビデオ理解について検討する。
我々は、ビデオ表現のためのフレームレベルの特徴を集約するためにトランスフォーマーを使用し、事前訓練されたテキストエンコーダを使用して、各アクションとビデオ全体に対応するテキストをエンコードする。
ビデオシーケンス検証とテキスト・ツー・ビデオマッチングの実験により,本手法がベースラインをはるかに上回ることを示す。
論文 参考訳(メタデータ) (2023-03-22T08:13:25Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
本研究は、時間的・意味的な微粒なアライメントを可能にする、新しいテキスト-ビデオのローカライゼーション・プレテキストタスクを導入する。
具体的には、テキスト-ビデオのローカライゼーションは、テキスト記述が与えられたビデオの開始と終了の境界を予測するモーメント検索から成っている。
提案手法は,細粒度フレーム表現と単語表現を結合し,単一モードにおける異なるインスタンスの表現を暗黙的に区別する。
論文 参考訳(メタデータ) (2023-01-18T12:15:47Z) - Are All Combinations Equal? Combining Textual and Visual Features with
Multiple Space Learning for Text-Based Video Retrieval [9.537322316673617]
多様なテキスト・視覚的特徴を特徴対に最適に組み合わせる方法について検討する。
これらの表現を学習するために、提案するネットワークアーキテクチャは、複数の空間学習手順に従って訓練される。
論文 参考訳(メタデータ) (2022-11-21T11:08:13Z) - Contrastive Video-Language Learning with Fine-grained Frame Sampling [54.542962813921214]
FineCoは、ビデオフレーム上で操作する微妙なコントラスト対象で、ビデオと言語表現をよりよく学習するアプローチである。
テキストと意味的に等価なフレームを選択することで、ビデオの削除を支援し、クロスモーダル対応を改善する。
論文 参考訳(メタデータ) (2022-10-10T22:48:08Z) - BridgeFormer: Bridging Video-text Retrieval with Multiple Choice
Questions [38.843518809230524]
我々は、Multiple Choice Questions (MCQ) と呼ばれる新しいプレテキストタスクを導入する。
BridgeFormerモジュールは、ビデオ機能に頼ってテキスト機能によって構築された"クエスト"に答えるように訓練されている。
質問や回答の形式では、ローカルなビデオテキストの特徴間の意味的関連を適切に確立することができる。
提案手法は,5つのデータセットにおいて,人気テキスト・ビデオ検索タスクにおける最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2022-01-13T09:33:54Z) - Video Corpus Moment Retrieval with Contrastive Learning [56.249924768243375]
ビデオコーパスモーメント検索(VCMR)は、与えられたテキストクエリに意味的に対応する時間モーメントを取得することです。
VCMRのためのコントラシブラーニング(ReLoCLNet)を用いた検索・ローカリゼーションネットワークを提案する。
実験の結果、ReLoCLNetは効率のためにテキストとビデオを個別にエンコードし、その検索精度はクロスモーダル相互作用学習を採用するベースラインと匹敵する。
論文 参考訳(メタデータ) (2021-05-13T12:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。