Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling
- URL: http://arxiv.org/abs/2503.19158v2
- Date: Wed, 26 Mar 2025 09:02:49 GMT
- Title: Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling
- Authors: Stefano De Carli, Nicola Licini, Davide Previtali, Fabio Previdi, Antonio Ferramosca,
- Abstract summary: This study introduces a Biological-Informed Recurrent Neural Network (BIRNN) framework to address these limitations.<n>The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states.<n>Results demonstrate the potential of BIRNN for personalized glucose regulation and future adaptive control strategies in AP systems.
- Score: 1.2256664621079256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Type 1 Diabetes (T1D) management is a complex task due to many variability factors. Artificial Pancreas (AP) systems have alleviated patient burden by automating insulin delivery through advanced control algorithms. However, the effectiveness of these systems depends on accurate modeling of glucose-insulin dynamics, which traditional mathematical models often fail to capture due to their inability to adapt to patient-specific variations. This study introduces a Biological-Informed Recurrent Neural Network (BIRNN) framework to address these limitations. The BIRNN leverages a Gated Recurrent Units (GRU) architecture augmented with physics-informed loss functions that embed physiological constraints, ensuring a balance between predictive accuracy and consistency with biological principles. The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states, even under circadian variations in insulin sensitivity. The results demonstrate the potential of BIRNN for personalized glucose regulation and future adaptive control strategies in AP systems.
Related papers
- Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNet is an AI-powered sensor system for continuously monitoring behavioral and physiological health.<n>We propose a decomposition-based transformer model that incorporates patients' behavioral and physiological data.<n>G GlucoNet achieves a 60% improvement in RMSE and a 21% reduction in the number of parameters, improving RMSE and MAE by 51% and 57%, using data obtained involving 12 participants with T1-Diabetes.
arXiv Detail & Related papers (2024-11-16T05:09:20Z) - Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission [0.0]
This study uses the Diabetes 130-US Hospitals dataset for analysis and prediction of readmission patients by various machine learning models.
LightGBM turned out to be the best traditional model, while XGBoost was the runner-up.
This study demonstrates that model selection, validation, and interpretability are key steps in predictive healthcare modeling.
arXiv Detail & Related papers (2024-06-28T15:06:22Z) - GARNN: An Interpretable Graph Attentive Recurrent Neural Network for
Predicting Blood Glucose Levels via Multivariate Time Series [12.618792803757714]
We propose interpretable graph attentive neural networks (GARNNs) to model multi-modal data.
GARNNs achieve the best prediction accuracy and provide high-quality temporal interpretability.
These findings underline the potential of GARNN as a robust tool for improving diabetes care.
arXiv Detail & Related papers (2024-02-26T01:18:53Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Interpreting Deep Glucose Predictive Models for Diabetic People Using
RETAIN [4.692400531340393]
We study the RETAIN architecture for the forecasting of future glucose values for diabetic people.
Thanks to its two-level attention mechanism, the RETAIN model is interpretable while remaining as efficient as standard neural networks.
arXiv Detail & Related papers (2020-09-08T13:20:15Z) - Learning Insulin-Glucose Dynamics in the Wild [3.807204094109513]
We develop a new model of insulin-glucose dynamics for forecasting blood glucose in type 1 diabetics.
Our model maintains a physiologically plausible inductive bias and clinically interpretable parameters.
We show that allowing biomedical model dynamics to vary in time improves forecasting at long time horizons.
arXiv Detail & Related papers (2020-08-06T19:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.