論文の概要: Fast and Error-Correctable Quantum RAM
- arxiv url: http://arxiv.org/abs/2503.19172v1
- Date: Mon, 24 Mar 2025 21:51:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:53:50.141360
- Title: Fast and Error-Correctable Quantum RAM
- Title(参考訳): 高速かつ誤り補正可能な量子RAM
- Authors: Francesco Cesa, Hannes Bernien, Hannes Pichler,
- Abstract要約: 量子デバイスは、従来のコンピュータと根本的に異なる方法でデータを処理できる。
多くのアルゴリズムは量子ランダムアクセスメモリ(QRAM)の助けを必要とする。
- 参考スコア(独自算出の注目度): 0.2184775414778289
- License:
- Abstract: Quantum devices can process data in a fundamentally different way than classical computers. To leverage this potential, many algorithms require the aid of a quantum Random Access Memory (QRAM), i.e. a module capable of efficiently loading datasets (both classical and quantum) onto the quantum processor. However, a realization of this fundamental building block is still outstanding, since existing proposals require prohibitively many resources for reliable implementations, or are not compatible with current architectures. Moreover, present approaches cannot be scaled-up, as they do not allow for efficient quantum error-correction. Here we develop a QRAM design, that enables fast and robust QRAM calls, naturally allows for fault-tolerant and error-corrected operation, and can be integrated on present hardware. Our proposal employs a special quantum resource state that is consumed during the QRAM call: we discuss how it can be assembled and processed efficiently in a dedicated module, and give detailed blueprints for modern neutral-atom processors. Our work places a long missing, fundamental component of quantum computers within reach of currently available technology; this opens the door to algorithms featuring practical quantum advantage, including search or oracular problems, quantum chemistry and machine learning.
- Abstract(参考訳): 量子デバイスは、従来のコンピュータと根本的に異なる方法でデータを処理できる。
この可能性を活用するために、多くのアルゴリズムは量子ランダムアクセスメモリ(QRAM)の助けを必要とする。
しかし、既存の提案では、信頼性のある実装には非常に多くのリソースを必要とするか、現在のアーキテクチャと互換性がないため、この基本的なビルディングブロックの実現は依然として際立っている。
さらに、効率的な量子誤り訂正を許さないため、現在の手法はスケールアップできない。
そこで我々は,高速で堅牢なQRAMコールを実現するQRAM設計を開発し,フォールトトレラントおよびエラー訂正操作を自然に可能とし,現在のハードウェアに組み込むことができる。
提案では、QRAMコール中に消費される特別な量子リソース状態を用いて、これを専用のモジュールで効率的に組み立て、処理する方法について議論し、現代の中性原子プロセッサの詳細な青写真を提供する。
私たちの研究は、現在利用可能な技術の範囲内に、量子コンピュータの長い欠落した基本的なコンポーネントを配置しています。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - Combining quantum processors with real-time classical communication [0.6597195879147557]
量子コンピュータは、量子力学の法則で情報を処理している。
現在の量子ハードウェアはノイズが多く、短時間しか情報を保存できず、量子ビット(qubits)と呼ばれる数ビットに制限されている。
ここでは、これらの制限を、最大142量子ビットの周期接続を必要とする量子状態を生成するために、エラー軽減された動的回路と回路切断で克服する。
論文 参考訳(メタデータ) (2024-02-27T19:00:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Computing Toolkit From Nuts and Bolts to Sack of Tools [0.0]
量子コンピューティングは、古典コンピューティングよりも処理において指数関数的なパフォーマンス上の利点を提供する可能性がある。
これは計算問題を解くために量子力学現象(重ね合わせ、絡み合い、干渉など)を利用する。
量子コンピュータは開発初期段階にあり、デコヒーレンス、すなわち環境相互作用によって劣化する量子ビットのためにノイズがある。
論文 参考訳(メタデータ) (2023-02-17T14:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
量子処理ユニット(QPU)の出現に伴い、計算パラダイムの分岐点が見られます。
超多項式スピードアップによる計算の可能性を抽出し、量子アルゴリズムを実現するには、量子誤り訂正技術の大幅な進歩が必要になる可能性が高い。
長期的には、より効率的な量子誤り訂正符号を実現するために、2次元トポロジ以上の量子ビット接続を利用するハードウェアが見られます。
論文 参考訳(メタデータ) (2022-09-14T18:00:03Z) - Ion Coulomb Crystals in Storage Rings for Quantum Information Science [0.1421245849212703]
量子情報科学は、コンピューティングを高性能で大規模なコンピューティングの新しい時代へと導くことを約束する。
今日の実用的な量子コンピューティングの際立った問題は、量子ビットの相互接続性を維持しながらシステムをスケールアップすることである。
円形の高周波四重極は大きな円形イオントラップとして機能し、より大規模な量子コンピューティングを可能にする。
論文 参考訳(メタデータ) (2022-03-14T01:53:42Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon
Networks [6.540771405203322]
量子ランダムアクセスメモリ(qRAM)は、量子情報処理におけるスピードアップを可能にする重要な演算ユニットであると考えられている。
本稿では, ソリッドステートメモリと統合されたフォトニック集積回路(PIC)アーキテクチャを, qRAMを構築するための実行可能なプラットフォームとして提案する。
また、量子テレポーテーションに基づく代替スキームを提案し、それを量子ネットワークのコンテキストに拡張する。
論文 参考訳(メタデータ) (2021-03-13T05:39:03Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。