Fast and Error-Correctable Quantum RAM
- URL: http://arxiv.org/abs/2503.19172v1
- Date: Mon, 24 Mar 2025 21:51:49 GMT
- Title: Fast and Error-Correctable Quantum RAM
- Authors: Francesco Cesa, Hannes Bernien, Hannes Pichler,
- Abstract summary: Quantum devices can process data in a fundamentally different way than classical computers.<n>Many algorithms require the aid of a quantum Random Access Memory (QRAM)
- Score: 0.2184775414778289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum devices can process data in a fundamentally different way than classical computers. To leverage this potential, many algorithms require the aid of a quantum Random Access Memory (QRAM), i.e. a module capable of efficiently loading datasets (both classical and quantum) onto the quantum processor. However, a realization of this fundamental building block is still outstanding, since existing proposals require prohibitively many resources for reliable implementations, or are not compatible with current architectures. Moreover, present approaches cannot be scaled-up, as they do not allow for efficient quantum error-correction. Here we develop a QRAM design, that enables fast and robust QRAM calls, naturally allows for fault-tolerant and error-corrected operation, and can be integrated on present hardware. Our proposal employs a special quantum resource state that is consumed during the QRAM call: we discuss how it can be assembled and processed efficiently in a dedicated module, and give detailed blueprints for modern neutral-atom processors. Our work places a long missing, fundamental component of quantum computers within reach of currently available technology; this opens the door to algorithms featuring practical quantum advantage, including search or oracular problems, quantum chemistry and machine learning.
Related papers
- How to Build a Quantum Supercomputer: Scaling from Hundreds to Millions of Qubits [3.970891204847277]
Small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubits.<n>We show how the road to scaling could be paved by adopting existing semiconductor technology to build much higher-quality qubits.<n>We argue that, to tackle industry-scale classical optimization and machine learning problems, heterogeneous quantum-probabilistic computing with custom-designed accelerators should be considered.
arXiv Detail & Related papers (2024-11-15T18:22:46Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Combining quantum processors with real-time classical communication [0.6597195879147557]
Quantum computers process information with the laws of quantum mechanics.<n>Current quantum hardware is noisy, can only store information for a short time, and is limited to a few quantum bits, i.e., qubits.<n>Here we overcome these limitations with error mitigated dynamic circuits and circuit-cutting to create quantum states requiring a periodic connectivity employing up to 142 qubits.
arXiv Detail & Related papers (2024-02-27T19:00:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Computing Toolkit From Nuts and Bolts to Sack of Tools [0.0]
Quantum computing has the potential to provide exponential performance benefits in processing over classical computing.
It utilizes quantum mechanics phenomena (such as superposition, entanglement, and interference) to solve a computational problem.
Quantum computers are in the nascent stage of development and are noisy due to decoherence, i.e., quantum bits deteriorate with environmental interactions.
arXiv Detail & Related papers (2023-02-17T14:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Ion Coulomb Crystals in Storage Rings for Quantum Information Science [0.1421245849212703]
Quantum information science promises to take computing into a new age of higher performance and larger scale computing.
The outstanding issue in practical quantum computing today is scaling up the system while maintaining interconnectivity of the qubits.
A circular radio-frequency quadrupole acts as a large circular ion trap and could enable larger scale quantum computing.
arXiv Detail & Related papers (2022-03-14T01:53:42Z) - Long-Time Error-Mitigating Simulation of Open Quantum Systems on Near Term Quantum Computers [38.860468003121404]
We study an open quantum system simulation on quantum hardware, which demonstrates robustness to hardware errors even with deep circuits containing up to two thousand entangling gates.
We simulate two systems of electrons coupled to an infinite thermal bath: 1) a system of dissipative free electrons in a driving electric field; and 2) the thermalization of two interacting electrons in a single orbital in a magnetic field -- the Hubbard atom.
Our results demonstrate that algorithms for simulating open quantum systems are able to far outperform similarly complex non-dissipative algorithms on noisy hardware.
arXiv Detail & Related papers (2021-08-02T21:36:37Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon
Networks [6.540771405203322]
A quantum random access memory (qRAM) is considered an essential computing unit to enable speedups in quantum information processing.
Here, we propose a photonic integrated circuit (PIC) architecture integrated with solid-state memories as a viable platform for constructing a qRAM.
We also present an alternative scheme based on quantum teleportation and extend it to the context of quantum networks.
arXiv Detail & Related papers (2021-03-13T05:39:03Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.