論文の概要: A Survey of Large Language Model Agents for Question Answering
- arxiv url: http://arxiv.org/abs/2503.19213v1
- Date: Mon, 24 Mar 2025 23:39:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:51:41.676214
- Title: A Survey of Large Language Model Agents for Question Answering
- Title(参考訳): 質問応答のための大規模言語モデルエージェントの検討
- Authors: Murong Yue,
- Abstract要約: 本稿では,大規模言語モデル(LLM)に基づく質問応答エージェント(QA)の開発について検討する。
従来のエージェントは、大量のデータ要件や、新しい環境への一般化の難しさなど、重大な制限に直面している。
LLMベースのエージェントは、LLMをコア推論エンジンとして活用することで、これらの課題に対処する。
- 参考スコア(独自算出の注目度): 0.7416846035207727
- License:
- Abstract: This paper surveys the development of large language model (LLM)-based agents for question answering (QA). Traditional agents face significant limitations, including substantial data requirements and difficulty in generalizing to new environments. LLM-based agents address these challenges by leveraging LLMs as their core reasoning engine. These agents achieve superior QA results compared to traditional QA pipelines and naive LLM QA systems by enabling interaction with external environments. We systematically review the design of LLM agents in the context of QA tasks, organizing our discussion across key stages: planning, question understanding, information retrieval, and answer generation. Additionally, this paper identifies ongoing challenges and explores future research directions to enhance the performance of LLM agent QA systems.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)に基づく質問応答エージェント(QA)の開発について検討する。
従来のエージェントは、大量のデータ要件や、新しい環境への一般化の難しさなど、重大な制限に直面している。
LLMベースのエージェントは、LLMをコア推論エンジンとして活用することで、これらの課題に対処する。
これらのエージェントは、従来のQAパイプラインやLLM QAシステムと比較して、外部環境とのインタラクションを可能にすることにより、優れたQA結果が得られる。
我々は、QAタスクの文脈でLLMエージェントの設計を体系的にレビューし、計画、質問理解、情報検索、回答生成といった主要な段階にわたる議論を整理する。
さらに,現在進行中の課題を明らかにし,LLMエージェントQAシステムの性能向上に向けた今後の研究の方向性について検討する。
関連論文リスト
- AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - Seek and Solve Reasoning for Table Question Answering [49.006950918895306]
本稿では,タスク単純化時の推論プロセスが,タスク自体の単純化よりも有用であることを示す。
本稿では,LLMにまず関連情報を求め,質問に答えるように指示するSeek-and-solving Pipelineを提案する。
本稿では, SS-CoT経路を用いた実演を用いて, 複雑なTQA課題の解決にLLMを誘導する単一ステップTQA解決プロンプトをこのパイプラインから蒸留する。
論文 参考訳(メタデータ) (2024-09-09T02:41:00Z) - Large Language Model-Based Agents for Software Engineering: A Survey [20.258244647363544]
近年のLarge Language Models(LLM)の進歩は、AIエージェント、すなわちLLMベースのエージェントの新しいパラダイムを形成している。
我々は106の論文を収集し、それらを2つの視点、すなわちSEとエージェントの観点から分類する。
さらに、この重要な領域におけるオープンな課題と今後の方向性についても論じる。
論文 参考訳(メタデータ) (2024-09-04T15:59:41Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Automatic Question-Answer Generation for Long-Tail Knowledge [65.11554185687258]
テールエンティティのための特別なQAデータセットを生成するための自動アプローチを提案する。
我々は,新たに生成された長尾QAデータセットに事前学習したLLMを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-03-03T03:06:31Z) - Let LLMs Take on the Latest Challenges! A Chinese Dynamic Question
Answering Benchmark [69.3415799675046]
我々は,中国インターネットの最新ニュースに関連する質問対を含む中国の動的QAベンチマークCDQAを紹介する。
我々は、人間とモデルを組み合わせたパイプラインを通じて高品質なデータを得る。
また,CDQA上での中国LLMの評価と分析を行った。
論文 参考訳(メタデータ) (2024-02-29T15:22:13Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
大規模言語モデル(LLM)は、幅広いタスクで大きな成功を収めています。
近年, 1 つの LLM を単一計画や意思決定エージェントとして利用する手法の開発により, 複雑な問題解決や世界シミュレーションにおいて, LLM ベースのマルチエージェントシステムは大きな進歩を遂げている。
論文 参考訳(メタデータ) (2024-01-21T23:36:14Z) - In-Context Ability Transfer for Question Decomposition in Complex QA [6.745884231594893]
複雑な問合せ課題を解決するために,icat(In-Context Ability Transfer)を提案する。
複雑な質問を単純な質問に分解したり、ステップバイステップの合理性をLSMに生成することができる。
本研究では, 数値推論, 構成複素QA, 不均一複素QAを含む多種多様な複雑なQAタスクについて大規模に実験を行った。
論文 参考訳(メタデータ) (2023-10-26T11:11:07Z) - Enhancing Trust in LLM-Based AI Automation Agents: New Considerations
and Future Challenges [2.6212127510234797]
プロセス自動化の分野では、AIベースのエージェントの新世代が登場し、複雑なタスクの実行が可能になった。
本稿では、既存の文献で議論されているAIエージェントの信頼性の主な側面を分析し、この新世代の自動化エージェントに関連する具体的な考察と課題を特定する。
論文 参考訳(メタデータ) (2023-08-10T07:12:11Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。