Adaptive Multi-Order Graph Regularized NMF with Dual Sparsity for Hyperspectral Unmixing
- URL: http://arxiv.org/abs/2503.19258v1
- Date: Tue, 25 Mar 2025 01:44:02 GMT
- Title: Adaptive Multi-Order Graph Regularized NMF with Dual Sparsity for Hyperspectral Unmixing
- Authors: Hui Chen, Liangyu Liu, Xianchao Xiu, Wanquan Liu,
- Abstract summary: We propose a novel adaptive multi-order graph regularized NMF method (MOGNMF) with three key features.<n>Experiments on simulated and real hyperspectral data indicate that the proposed method delivers better unmixing results.
- Score: 8.449751010829148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral unmixing (HU) is a critical yet challenging task in remote sensing. However, existing nonnegative matrix factorization (NMF) methods with graph learning mostly focus on first-order or second-order nearest neighbor relationships and usually require manual parameter tuning, which fails to characterize intrinsic data structures. To address the above issues, we propose a novel adaptive multi-order graph regularized NMF method (MOGNMF) with three key features. First, multi-order graph regularization is introduced into the NMF framework to exploit global and local information comprehensively. Second, these parameters associated with the multi-order graph are learned adaptively through a data-driven approach. Third, dual sparsity is embedded to obtain better robustness, i.e., $\ell_{1/2}$-norm on the abundance matrix and $\ell_{2,1}$-norm on the noise matrix. To solve the proposed model, we develop an alternating minimization algorithm whose subproblems have explicit solutions, thus ensuring effectiveness. Experiments on simulated and real hyperspectral data indicate that the proposed method delivers better unmixing results.
Related papers
- Robust Orthogonal NMF with Label Propagation for Image Clustering [11.353489417171588]
Non-negative clustering factorization (artNFMF) is a popular unsupervised learning approach widely used in image clustering.
We develop an alternating direction method which (AD)-based solutions to solve noise corruption.
arXiv Detail & Related papers (2025-04-30T09:49:55Z) - Symmetry-preserving graph attention network to solve routing problems at
multiple resolutions [1.9304772860080408]
We introduce the first-ever completely equivariant model and training to solve problems.
It is essential to capture the multiscale structure of the input graph.
We propose a Multiresolution scheme in combination with Equi Graph Attention network (mEGAT) architecture.
arXiv Detail & Related papers (2023-10-24T06:22:20Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Random Manifold Sampling and Joint Sparse Regularization for Multi-label
Feature Selection [0.0]
The model proposed in this paper can obtain the most relevant few features by solving the joint constrained optimization problems of $ell_2,1$ and $ell_F$ regularization.
Comparative experiments on real-world data sets show that the proposed method outperforms other methods.
arXiv Detail & Related papers (2022-04-13T15:06:12Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
Symmetric nonnegative factor matrix (SNMF) has demonstrated to be a powerful method for data clustering.
Inspired by ensemble clustering that aims to seek better clustering results, we propose self-supervised SNMF (S$3$NMF)
We take advantage of the sensitivity to code characteristic of SNMF, without relying on any additional information.
arXiv Detail & Related papers (2021-03-02T12:47:40Z) - Hyperspectral Unmixing via Nonnegative Matrix Factorization with
Handcrafted and Learnt Priors [14.032039261229853]
We propose an NMF based unmixing framework which jointly uses a handcrafting regularizer and a learnt regularizer from data.
We plug learnt priors of abundances where the associated subproblem can be addressed using various image denoisers.
arXiv Detail & Related papers (2020-10-09T14:40:20Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.