Robust Orthogonal NMF with Label Propagation for Image Clustering
- URL: http://arxiv.org/abs/2504.21472v1
- Date: Wed, 30 Apr 2025 09:49:55 GMT
- Title: Robust Orthogonal NMF with Label Propagation for Image Clustering
- Authors: Jingjing Liu, Nian Wu, Xianchao Xiu, Jianhua Zhang,
- Abstract summary: Non-negative clustering factorization (artNFMF) is a popular unsupervised learning approach widely used in image clustering.<n>We develop an alternating direction method which (AD)-based solutions to solve noise corruption.
- Score: 11.353489417171588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-negative matrix factorization (NMF) is a popular unsupervised learning approach widely used in image clustering. However, in real-world clustering scenarios, most existing NMF methods are highly sensitive to noise corruption and are unable to effectively leverage limited supervised information. To overcome these drawbacks, we propose a unified non-convex framework with label propagation called robust orthogonal nonnegative matrix factorization (RONMF). This method not only considers the graph Laplacian and label propagation as regularization terms but also introduces a more effective non-convex structure to measure the reconstruction error and imposes orthogonal constraints on the basis matrix to reduce the noise corruption, thereby achieving higher robustness. To solve RONMF, we develop an alternating direction method of multipliers (ADMM)-based optimization algorithm. In particular, all subproblems have closed-form solutions, which ensures its efficiency. Experimental evaluations on eight public image datasets demonstrate that the proposed RONMF outperforms state-of-the-art NMF methods across various standard metrics and shows excellent robustness. The code will be available at https://github.com/slinda-liu.
Related papers
- A Fresh Look at Generalized Category Discovery through Non-negative Matrix Factorization [83.12938977698988]
Generalized Category Discovery (GCD) aims to classify both base and novel images using labeled base data.
Current approaches inadequately address the intrinsic optimization of the co-occurrence matrix $barA$ based on cosine similarity.
We propose a Non-Negative Generalized Category Discovery (NN-GCD) framework to address these deficiencies.
arXiv Detail & Related papers (2024-10-29T07:24:11Z) - Graph Regularized NMF with L20-norm for Unsupervised Feature Learning [6.894518335015327]
Graph Regularized Non-negative Matrix Factorization (GNMF) is an extension of NMF that incorporates graph regularization constraints.
We propose an unsupervised feature learning framework based on GNMF and devise an algorithm based on PALM.
arXiv Detail & Related papers (2024-03-16T12:10:01Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
We consider matrix factorization (MF) with certain constraints, which finds wide applications in various areas.
We develop a Bayesian approach to MF with an efficient message passing implementation, called UAMPMF.
We show that UAMPMF significantly outperforms state-of-the-art algorithms in terms of recovery accuracy, robustness and computational complexity.
arXiv Detail & Related papers (2022-07-31T12:09:32Z) - Adaptive Weighted Nonnegative Matrix Factorization for Robust Feature
Representation [9.844796520630522]
Nonnegative matrix factorization (NMF) has been widely used to dimensionality reduction in machine learning.
Traditional NMF does not properly handle outliers, so that it is sensitive to noise.
This paper proposes an adaptive weighted NMF, which introduces weights to emphasize the different importance of each data point.
arXiv Detail & Related papers (2022-06-07T05:27:08Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Robust Matrix Factorization with Grouping Effect [28.35582493230616]
We propose a novel method called Matrix Factorization with Grouping effect (GRMF)
The proposed GRMF can learn grouping structure and sparsity in MF without prior knowledge.
Experiments have been conducted using real-world data sets with outliers and contaminated noise.
arXiv Detail & Related papers (2021-06-25T15:03:52Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
Nonnegative Matrix Factorization (NMF) is a widely-used data analysis technique, and has yielded impressive results in many real-world tasks.
In this study, an Entropy Minimizing Matrix Factorization framework (EMMF) is developed to tackle the above problem.
Considering that the outliers are usually much less than the normal samples, a new entropy loss function is established for matrix factorization.
arXiv Detail & Related papers (2021-03-24T21:08:43Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
Symmetric nonnegative factor matrix (SNMF) has demonstrated to be a powerful method for data clustering.
Inspired by ensemble clustering that aims to seek better clustering results, we propose self-supervised SNMF (S$3$NMF)
We take advantage of the sensitivity to code characteristic of SNMF, without relying on any additional information.
arXiv Detail & Related papers (2021-03-02T12:47:40Z) - Hyperspectral Unmixing via Nonnegative Matrix Factorization with
Handcrafted and Learnt Priors [14.032039261229853]
We propose an NMF based unmixing framework which jointly uses a handcrafting regularizer and a learnt regularizer from data.
We plug learnt priors of abundances where the associated subproblem can be addressed using various image denoisers.
arXiv Detail & Related papers (2020-10-09T14:40:20Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
We show that PSDMF algorithms can be designed based on phase retrieval (PR) and affine rank minimization (ARM) algorithms.
Motivated by this idea, we introduce a new family of PSDMF algorithms based on iterative hard thresholding (IHT)
arXiv Detail & Related papers (2020-07-24T06:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.