論文の概要: RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs
- arxiv url: http://arxiv.org/abs/2503.19314v1
- Date: Tue, 25 Mar 2025 03:21:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:33.055219
- Title: RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs
- Title(参考訳): RGL: グラフ上の効率的な検索拡張生成のためのグラフ中心のモジュールフレームワーク
- Authors: Yuan Li, Jun Hu, Jiaxin Jiang, Zemin Liu, Bryan Hooi, Bingsheng He,
- Abstract要約: 完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
- 参考スコア(独自算出の注目度): 58.10503898336799
- License:
- Abstract: Recent advances in graph learning have paved the way for innovative retrieval-augmented generation (RAG) systems that leverage the inherent relational structures in graph data. However, many existing approaches suffer from rigid, fixed settings and significant engineering overhead, limiting their adaptability and scalability. Additionally, the RAG community has largely overlooked the decades of research in the graph database community regarding the efficient retrieval of interesting substructures on large-scale graphs. In this work, we introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline-from efficient graph indexing and dynamic node retrieval to subgraph construction, tokenization, and final generation-into a unified system. RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components, achieving speedups of up to 143x compared to conventional methods. Moreover, its flexible utilities, such as dynamic node filtering, allow for rapid extraction of pertinent subgraphs while reducing token consumption. Our extensive evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems across a range of tasks.
- Abstract(参考訳): グラフ学習の最近の進歩は、グラフデータに固有の関係構造を利用する革新的な検索強化生成システム(RAG)の道を開いた。
しかし、多くの既存のアプローチは厳格で固定された設定とエンジニアリング上のオーバーヘッドに悩まされており、適応性とスケーラビリティが制限されている。
さらに、RAGコミュニティは、大規模グラフ上の興味深い部分構造の効率的な検索について、グラフデータベースコミュニティにおける数十年の研究を概ね見落としている。
本研究では, RAG-on-Graphs Library (RGL)を導入し, RAGパイプラインを効率的なグラフインデックスと動的ノード検索からグラフ構築, トークン化, 最終生成までシームレスに統合する。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、従来の方法と比較して最大143倍のスピードアップを達成することで、重要な課題に対処する。
さらに、動的ノードフィルタリングのような柔軟なユーティリティは、トークン消費を減らしながら、関連するサブグラフを迅速に抽出することができる。
我々は,RGLがプロトタイピングプロセスの高速化だけでなく,様々なタスクにおけるグラフベースRAGシステムの性能と適用性の向上も示している。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - MassiveGNN: Efficient Training via Prefetching for Massively Connected Distributed Graphs [11.026326555186333]
本稿では,現在最先端のAmazon DistDGL分散GNNフレームワーク上に,パラメータ化された連続プリフェッチと消去方式を提案する。
NERSC(National Energy Research Scientific Computing Center)のPerlmutterスーパーコンピュータでは、エンドツーエンドのトレーニング性能が15~40%向上している。
論文 参考訳(メタデータ) (2024-10-30T05:10:38Z) - SiHGNN: Leveraging Properties of Semantic Graphs for Efficient HGNN Acceleration [9.85638913900595]
不均一グラフニューラルネットワーク (HGNN) は、グラフ表現学習を異種グラフ場に拡張した。
近年の研究では、医療分析やレコメンデーションシステムなど、様々な応用において優れた性能を示している。
我々は,SiHGNNと呼ばれるHGNN用の軽量ハードウェアアクセラレータを提案する。このアクセラレータはツリーベースのセマンティックグラフビルダーを組み込んで,効率的なセマンティックグラフ生成を実現し,セマンティックグラフレイアウトを最適化するための新しいグラフ再構成器を備えている。
論文 参考訳(メタデータ) (2024-08-27T14:20:21Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の課題に再トレーニングを必要とせずに対処することに成功した。
本稿では,GraphRAGの方法論について概観する。
Graph-Based Indexing、Graph-Guided Retrieval、Graph-Enhanced Generationを含むGraphRAGワークフローを形式化する。
論文 参考訳(メタデータ) (2024-08-15T12:20:24Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
2つのコア成分を組み込んだ多次元グラフ学習モデルを提案します。
情報埋め込みグラフを生成するグラフ自己補正(GSC)機構、および入力グラフの包括的な特性評価を達成するために多様性ブースト正規化(DBR)。
一般的なグラフ分類ベンチマークの実験は、提案されたGSCメカニズムが最先端のグラフプーリング方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2021-03-17T16:22:24Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。