LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration
- URL: http://arxiv.org/abs/2411.05844v2
- Date: Fri, 17 Jan 2025 05:33:54 GMT
- Title: LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration
- Authors: Yukun Cao, Zengyi Gao, Zhiyang Li, Xike Xie, Kevin Zhou, Jianliang Xu,
- Abstract summary: We propose LEGO-GraphRAG, a modular framework that enables fine-grained decomposition of the GraphRAG workflow.
Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets.
- Score: 17.514586423233872
- License:
- Abstract: GraphRAG integrates (knowledge) graphs with large language models (LLMs) to improve reasoning accuracy and contextual relevance. Despite its promising applications and strong relevance to multiple research communities, such as databases and natural language processing, GraphRAG currently lacks modular workflow analysis, systematic solution frameworks, and insightful empirical studies. To bridge these gaps, we propose LEGO-GraphRAG, a modular framework that enables: 1) fine-grained decomposition of the GraphRAG workflow, 2) systematic classification of existing techniques and implemented GraphRAG instances, and 3) creation of new GraphRAG instances. Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets, revealing insights into balancing reasoning quality, runtime efficiency, and token or GPU cost, that are essential for building advanced GraphRAG systems.
Related papers
- RAG vs. GraphRAG: A Systematic Evaluation and Key Insights [42.31801859160484]
We systematically evaluate Retrieval-Augmented Generation (RAG) and GraphRAG on text-based benchmarks.
Our results highlight the distinct strengths of RAG and GraphRAG across different tasks and evaluation perspectives.
arXiv Detail & Related papers (2025-02-17T02:36:30Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.
GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.
It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.
Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.
Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding [17.724492441325165]
Large Language Models (LLMs) struggle with comprehending graphical structure information through prompts of graph description sequences.
We propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information.
arXiv Detail & Related papers (2024-09-05T05:34:16Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification [48.334100429553644]
This paper proposes to design a joint graph data and architecture mechanism, which identifies important sub-architectures via the valuable graph data.
To search for optimal lightweight Graph Neural Networks (GNNs), we propose a Lightweight Graph Neural Architecture Search with Graph SparsIfication and Network Pruning (GASSIP) method.
Our method achieves on-par or even higher node classification performance with half or fewer model parameters of searched GNNs and a sparser graph.
arXiv Detail & Related papers (2024-06-24T06:53:37Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.