Multi-Object Sketch Animation by Scene Decomposition and Motion Planning
- URL: http://arxiv.org/abs/2503.19351v1
- Date: Tue, 25 Mar 2025 05:00:11 GMT
- Title: Multi-Object Sketch Animation by Scene Decomposition and Motion Planning
- Authors: Jingyu Liu, Zijie Xin, Yuhan Fu, Ruixiang Zhao, Bangxiang Lan, Xirong Li,
- Abstract summary: MoSketch takes a pioneering step towards multi-object sketch animation, opening new avenues for future research and applications.<n>We summarize two challenges of transitioning from single-object to multi-object sketch animation: object-aware motion modeling and complex motion optimization.
- Score: 9.124628743276691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sketch animation, which brings static sketches to life by generating dynamic video sequences, has found widespread applications in GIF design, cartoon production, and daily entertainment. While current sketch animation methods perform well in single-object sketch animation, they struggle in multi-object scenarios. By analyzing their failures, we summarize two challenges of transitioning from single-object to multi-object sketch animation: object-aware motion modeling and complex motion optimization. For multi-object sketch animation, we propose MoSketch based on iterative optimization through Score Distillation Sampling (SDS), without any other data for training. We propose four modules: LLM-based scene decomposition, LLM-based motion planning, motion refinement network and compositional SDS, to tackle the two challenges in a divide-and-conquer strategy. Extensive qualitative and quantitative experiments demonstrate the superiority of our method over existing sketch animation approaches. MoSketch takes a pioneering step towards multi-object sketch animation, opening new avenues for future research and applications. The code will be released.
Related papers
- Sketch2Anim: Towards Transferring Sketch Storyboards into 3D Animation [22.325990468075368]
Animators use the 2D sketches in storyboards as references to craft the desired 3D animations through a trial-and-error process.
There is a high demand for automated methods that can directly translate 2D storyboard sketches into 3D animations.
We present Sketch2Anim, composed of two key modules for sketch constraint understanding and motion generation.
arXiv Detail & Related papers (2025-04-27T10:38:17Z) - Gaussians-to-Life: Text-Driven Animation of 3D Gaussian Splatting Scenes [49.26872036160368]
We propose a method for animating parts of high-quality 3D scenes in a Gaussian Splatting representation.<n>We find that, in contrast to prior work, this enables realistic animations of complex, pre-existing 3D scenes.
arXiv Detail & Related papers (2024-11-28T16:01:58Z) - FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations [65.64014682930164]
Sketch animations offer a powerful medium for visual storytelling, from simple flip-book doodles to professional studio productions.
We present FlipSketch, a system that brings back the magic of flip-book animation -- just draw your idea and describe how you want it to move!
arXiv Detail & Related papers (2024-11-16T14:53:03Z) - Breathing Life Into Sketches Using Text-to-Video Priors [101.8236605955899]
A sketch is one of the most intuitive and versatile tools humans use to convey their ideas visually.
In this work, we present a method that automatically adds motion to a single-subject sketch.
The output is a short animation provided in vector representation, which can be easily edited.
arXiv Detail & Related papers (2023-11-21T18:09:30Z) - Bridging the Gap: Sketch-Aware Interpolation Network for High-Quality Animation Sketch Inbetweening [58.09847349781176]
We propose a novel deep learning method - Sketch-Aware Interpolation Network (SAIN)
This approach incorporates multi-level guidance that formulates region-level correspondence, stroke-level correspondence and pixel-level dynamics.
A multi-stream U-Transformer is then devised to characterize sketch inbetweening patterns using these multi-level guides through the integration of self / cross-attention mechanisms.
arXiv Detail & Related papers (2023-08-25T09:51:03Z) - AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models
without Specific Tuning [92.33690050667475]
AnimateDiff is a framework for animating personalized T2I models without requiring model-specific tuning.
We propose MotionLoRA, a lightweight fine-tuning technique for AnimateDiff that enables a pre-trained motion module to adapt to new motion patterns.
Results show that our approaches help these models generate temporally smooth animation clips while preserving the visual quality and motion diversity.
arXiv Detail & Related papers (2023-07-10T17:34:16Z) - AnimeRun: 2D Animation Visual Correspondence from Open Source 3D Movies [98.65469430034246]
Existing datasets for two-dimensional (2D) cartoon suffer from simple frame composition and monotonic movements.
We present a new 2D animation visual correspondence dataset, AnimeRun, by converting open source 3D movies to full scenes in 2D style.
Our analyses show that the proposed dataset not only resembles real anime more in image composition, but also possesses richer and more complex motion patterns compared to existing datasets.
arXiv Detail & Related papers (2022-11-10T17:26:21Z) - SketchBetween: Video-to-Video Synthesis for Sprite Animation via
Sketches [0.9645196221785693]
2D animation is a common factor in game development, used for characters, effects and background art.
Automated animation approaches exist, but are designed without animators in mind.
We propose a problem formulation that adheres more closely to the standard workflow of animation.
arXiv Detail & Related papers (2022-09-01T02:43:19Z) - Sketch Me A Video [32.38205496481408]
We introduce a new video synthesis task by employing two rough bad-drwan sketches only as input to create a realistic portrait video.
A two-stage Sketch-to-Video model is proposed, which consists of two key novelties.
arXiv Detail & Related papers (2021-10-10T05:40:11Z) - Deep Animation Video Interpolation in the Wild [115.24454577119432]
In this work, we formally define and study the animation video code problem for the first time.
We propose an effective framework, AnimeInterp, with two dedicated modules in a coarse-to-fine manner.
Notably, AnimeInterp shows favorable perceptual quality and robustness for animation scenarios in the wild.
arXiv Detail & Related papers (2021-04-06T13:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.