SketchBetween: Video-to-Video Synthesis for Sprite Animation via
Sketches
- URL: http://arxiv.org/abs/2209.00185v1
- Date: Thu, 1 Sep 2022 02:43:19 GMT
- Title: SketchBetween: Video-to-Video Synthesis for Sprite Animation via
Sketches
- Authors: Dagmar Lukka Loftsd\'ottir and Matthew Guzdial
- Abstract summary: 2D animation is a common factor in game development, used for characters, effects and background art.
Automated animation approaches exist, but are designed without animators in mind.
We propose a problem formulation that adheres more closely to the standard workflow of animation.
- Score: 0.9645196221785693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 2D animation is a common factor in game development, used for characters,
effects and background art. It involves work that takes both skill and time,
but parts of which are repetitive and tedious. Automated animation approaches
exist, but are designed without animators in mind. The focus is heavily on
real-life video, which follows strict laws of how objects move, and does not
account for the stylistic movement often present in 2D animation. We propose a
problem formulation that more closely adheres to the standard workflow of
animation. We also demonstrate a model, SketchBetween, which learns to map
between keyframes and sketched in-betweens to rendered sprite animations. We
demonstrate that our problem formulation provides the required information for
the task and that our model outperforms an existing method.
Related papers
- FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations [65.64014682930164]
Sketch animations offer a powerful medium for visual storytelling, from simple flip-book doodles to professional studio productions.
We present FlipSketch, a system that brings back the magic of flip-book animation -- just draw your idea and describe how you want it to move!
arXiv Detail & Related papers (2024-11-16T14:53:03Z) - AnimateZoo: Zero-shot Video Generation of Cross-Species Animation via Subject Alignment [64.02822911038848]
We present AnimateZoo, a zero-shot diffusion-based video generator to produce animal animations.
Key technique used in our AnimateZoo is subject alignment, which includes two steps.
Our model is capable of generating videos characterized by accurate movements, consistent appearance, and high-fidelity frames.
arXiv Detail & Related papers (2024-04-07T12:57:41Z) - AnimateZero: Video Diffusion Models are Zero-Shot Image Animators [63.938509879469024]
We propose AnimateZero to unveil the pre-trained text-to-video diffusion model, i.e., AnimateDiff.
For appearance control, we borrow intermediate latents and their features from the text-to-image (T2I) generation.
For temporal control, we replace the global temporal attention of the original T2V model with our proposed positional-corrected window attention.
arXiv Detail & Related papers (2023-12-06T13:39:35Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence.
Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion.
We introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity.
arXiv Detail & Related papers (2023-11-27T18:32:31Z) - Breathing Life Into Sketches Using Text-to-Video Priors [101.8236605955899]
A sketch is one of the most intuitive and versatile tools humans use to convey their ideas visually.
In this work, we present a method that automatically adds motion to a single-subject sketch.
The output is a short animation provided in vector representation, which can be easily edited.
arXiv Detail & Related papers (2023-11-21T18:09:30Z) - AnimateAnything: Fine-Grained Open Domain Image Animation with Motion
Guidance [13.416296247896042]
We introduce an open domain image animation method that leverages the motion prior of video diffusion model.
Our approach introduces targeted motion area guidance and motion strength guidance, enabling precise control of the movable area and its motion speed.
We validate the effectiveness of our method through rigorous experiments on an open-domain dataset.
arXiv Detail & Related papers (2023-11-21T03:47:54Z) - Deep Animation Video Interpolation in the Wild [115.24454577119432]
In this work, we formally define and study the animation video code problem for the first time.
We propose an effective framework, AnimeInterp, with two dedicated modules in a coarse-to-fine manner.
Notably, AnimeInterp shows favorable perceptual quality and robustness for animation scenarios in the wild.
arXiv Detail & Related papers (2021-04-06T13:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.