Quantifying Symptom Causality in Clinical Decision Making: An Exploration Using CausaLM
- URL: http://arxiv.org/abs/2503.19394v1
- Date: Tue, 25 Mar 2025 06:59:21 GMT
- Title: Quantifying Symptom Causality in Clinical Decision Making: An Exploration Using CausaLM
- Authors: Mehul Shetty, Connor Jordan,
- Abstract summary: Current machine learning approaches to medical diagnosis often rely on correlational patterns between symptoms and diseases.<n>In this work, we move beyond correlation to investigate the causal influence of key symptoms-specifically "chest pain" on diagnostic predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current machine learning approaches to medical diagnosis often rely on correlational patterns between symptoms and diseases, risking misdiagnoses when symptoms are ambiguous or common across multiple conditions. In this work, we move beyond correlation to investigate the causal influence of key symptoms-specifically "chest pain" on diagnostic predictions. Leveraging the CausaLM framework, we generate counterfactual text representations in which target concepts are effectively "forgotten" enabling a principled estimation of the causal effect of that concept on a model's predicted disease distribution. By employing Textual Representation-based Average Treatment Effect (TReATE), we quantify how the presence or absence of a symptom shapes the model's diagnostic outcomes, and contrast these findings against correlation-based baselines such as CONEXP. Our results offer deeper insight into the decision-making behavior of clinical NLP models and have the potential to inform more trustworthy, interpretable, and causally-grounded decision support tools in medical practice.
Related papers
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.
We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.
We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Research on the Proximity Relationships of Psychosomatic Disease Knowledge Graph Modules Extracted by Large Language Models [15.497329016495677]
Psychosomatic disorders are a major challenge in global health issues.<n>We establish the BERT model and entity types, constructing the knowledge graph with 9668 triples.<n>By analyzing the network distances between disease, symptom, and drug modules, it was found that closer network distances among diseases can predict greater similarities in their clinical manifestations, treatment approaches, and psychological mechanisms, and closer distances between symptoms indicate that they are more likely to co-occur.
arXiv Detail & Related papers (2024-12-24T13:24:01Z) - Fair Diagnosis: Leveraging Causal Modeling to Mitigate Medical Bias [14.848344916632024]
In medical image analysis, model predictions can be affected by sensitive attributes, such as race and gender.<n>We present a causal modeling framework, which aims to reduce the impact of sensitive attributes on diagnostic predictions.
arXiv Detail & Related papers (2024-12-06T02:59:36Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - CTP:A Causal Interpretable Model for Non-Communicable Disease
Progression Prediction [12.282670150417953]
We propose a novel model called causal trajectory prediction (CTP) to tackle the limitation.
CTP combines trajectory prediction and causal discovery to enable accurate prediction of disease progression trajectories.
We evaluate the performance of the model using simulated and real medical datasets.
arXiv Detail & Related papers (2023-08-18T06:58:31Z) - Explorative analysis of human disease-symptoms relations using the
Convolutional Neural Network [0.0]
This study aims to understand the extent of symptom types in disease prediction tasks.
Our results indicate that machine learning can potentially diagnose diseases with the 98-100% accuracy in the early stage.
arXiv Detail & Related papers (2023-02-23T15:02:07Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Uncertainty aware and explainable diagnosis of retinal disease [0.0]
We perform uncertainty analysis of a deep learning model for diagnosis of four retinal diseases.
We show the features that a system used to make prediction while uncertainty awareness is the ability of a system to highlight when it is not sure about the decision.
arXiv Detail & Related papers (2021-01-26T23:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.