Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning
- URL: http://arxiv.org/abs/2503.19469v2
- Date: Fri, 28 Mar 2025 09:23:44 GMT
- Title: Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning
- Authors: Fred Philippy, Siwen Guo, Cedric Lothritz, Jacques Klein, Tegawendé F. Bissyandé,
- Abstract summary: Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training.<n>We introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC.<n>We evaluate our approach on multiple multilingual PLMs covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities.
- Score: 8.408016670697068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
Related papers
- Few-Shot Multilingual Open-Domain QA from 5 Examples [44.04243892727856]
We introduce a emphfew-shot learning approach to synthesise large-scale multilingual data from large language models (LLMs)
Our method begins with large-scale self-supervised pre-training using WikiData, followed by training on high-quality synthetic multilingual data generated by prompting LLMs with few-shot supervision.
The final model, textscFsModQA, significantly outperforms existing few-shot and supervised baselines in MLODQA and cross-lingual and monolingual retrieval.
arXiv Detail & Related papers (2025-02-27T03:24:57Z) - Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.<n>For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.<n>We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
We present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision.<n>LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks.<n>We introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages.
arXiv Detail & Related papers (2025-01-01T15:43:07Z) - How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text? [38.1823640848362]
Large language models (LLMs) have shown remarkable capabilities in many languages beyond English.
LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers and vocabulary.
Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue.
arXiv Detail & Related papers (2024-06-17T12:42:34Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
Current approaches circumvent the lack of high-quality labeled data in non-English languages.
We present a novel modular dense retrieval model that learns from the rich data of a single high-resource language.
arXiv Detail & Related papers (2024-02-23T02:21:24Z) - MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer [50.40191599304911]
We introduce MoSECroT Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer.
In this paper, we present the first framework that leverages relative representations to construct a common space for the embeddings of a source language PLM and the static word embeddings of a target language.
We show that although our proposed framework is competitive with weak baselines when addressing MoSECroT, it fails to achieve competitive results compared with some strong baselines.
arXiv Detail & Related papers (2024-01-09T21:09:07Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
We show that our models obtain competitive results while being orders of magnitude smaller and faster than current state-of-the-art methods.
Our multilabel strategy is more robust to unseen non-target languages compared to multiclass classification.
arXiv Detail & Related papers (2023-06-02T23:04:19Z) - From Masked Language Modeling to Translation: Non-English Auxiliary
Tasks Improve Zero-shot Spoken Language Understanding [24.149299722716155]
We introduce xSID, a new benchmark for cross-lingual Slot and Intent Detection in 13 languages from 6 language families, including a very low-resource dialect.
We propose a joint learning approach, with English SLU training data and non-English auxiliary tasks from raw text, syntax and translation for transfer.
Our results show that jointly learning the main tasks with masked language modeling is effective for slots, while machine translation transfer works best for intent classification.
arXiv Detail & Related papers (2021-05-15T23:51:11Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.