論文の概要: TeLL Me what you cant see
- arxiv url: http://arxiv.org/abs/2503.19478v1
- Date: Tue, 25 Mar 2025 09:12:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:52:36.214765
- Title: TeLL Me what you cant see
- Title(参考訳): TeLL 見ることができないもの
- Authors: Saverio Cavasin, Pietro Biasetton, Mattia Tamiazzo, Mauro Conti, Simone Milani,
- Abstract要約: 法執行機関はしばしば、高品質な画像の不足や、その陳腐化に関連する課題に直面している。
本稿では,これらの制約に対処する新しい法医学的なマグショット強化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 17.66342269632214
- License:
- Abstract: During criminal investigations, images of persons of interest directly influence the success of identification procedures. However, law enforcement agencies often face challenges related to the scarcity of high-quality images or their obsolescence, which can affect the accuracy and success of people searching processes. This paper introduces a novel forensic mugshot augmentation framework aimed at addressing these limitations. Our approach enhances the identification probability of individuals by generating additional, high-quality images through customizable data augmentation techniques, while maintaining the biometric integrity and consistency of the original data. Several experimental results show that our method significantly improves identification accuracy and robustness across various forensic scenarios, demonstrating its effectiveness as a trustworthy tool law enforcement applications. Index Terms: Digital Forensics, Person re-identification, Feature extraction, Data augmentation, Visual-Language models.
- Abstract(参考訳): 刑事捜査において、関心のある人物のイメージは、直接的に識別手続きの成功に影響を及ぼす。
しかし、法執行機関は、高品質な画像の不足や、その陳腐化に関連する課題に直面することが多く、これは人々の検索プロセスの正確性や成功に影響を及ぼす可能性がある。
本稿では,これらの制約に対処する新しい法医学的なマグショット強化フレームワークを提案する。
提案手法は, 生体データの整合性と整合性を維持しつつ, カスタマイズ可能なデータ拡張技術により, 高品質な画像を生成することにより, 個人の識別可能性を高める。
いくつかの実験結果から,本手法は様々な法学シナリオにおける識別精度と堅牢性を大幅に向上させ,信頼性の高いツール法執行アプリケーションとしての有効性を実証した。
インデックス用語: デジタル鑑識、人物の再識別、特徴抽出、データ拡張、ビジュアルランゲージモデル。
関連論文リスト
- Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation [56.46932751058042]
我々は、テキストから画像への拡散モデルのための学習可能なプロンプトプレフィックスをトレーニングし、匿名化された顔のアイデンティティを生成するよう強制する。
実験では,非同一性固有の画像生成の品質を損なうことなく,特定の個人を匿名化するAPLの匿名化性能を実証した。
論文 参考訳(メタデータ) (2024-05-27T07:38:26Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing Attacks [6.492755549391469]
顔認識システムは、高セキュリティアプリケーションに広くデプロイされている。
フェースモーフィングのようなデジタル操作は、顔認識システムにセキュリティ上の脅威をもたらす。
本稿では,ディープラーニングに基づく顔認識システムを,顔形態攻撃に対してより堅牢なものにするための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T21:04:05Z) - Individualized Deepfake Detection Exploiting Traces Due to Double
Neural-Network Operations [32.33331065408444]
既存のディープフェイク検出器は、画像が特定かつ識別可能な個人と関連付けられている場合、この検出タスクに最適化されない。
本研究では,個々の人物の顔画像のディープフェイク検出に焦点を当てた。
ニューラルネットワークのイデオロシティ特性を利用して検出性能を向上できることを実証する。
論文 参考訳(メタデータ) (2023-12-13T10:21:00Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
シークエンシャルディープフェイク検出は、回復のための正しいシーケンスで偽の顔領域を特定することを目的としている。
偽画像の復元には、逆変換を実装するための操作モデルの知識が必要である。
顔画像の空間スケールや逐次順列化を扱うマルチコラボレーション・マルチスーパービジョンネットワーク(MMNet)を提案する。
論文 参考訳(メタデータ) (2023-07-06T02:32:08Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
本研究では,修正データの利用性を確保しつつ,顔画像をシームレスに識別する新しいアルゴリズムであるDisguiseを紹介する。
本手法は, 難読化と非可逆性を最大化するために, 変分機構を用いて生成した合成物を用いて, 描写されたアイデンティティを抽出し置換することを含む。
提案手法を複数のデータセットを用いて広範に評価し,様々な下流タスクにおける従来の手法と比較して,高い非識別率と一貫性を示す。
論文 参考訳(メタデータ) (2023-03-23T13:50:46Z) - Psychophysical Evaluation of Human Performance in Detecting Digital Face
Image Manipulations [14.63266615325105]
この研究は、心理物理学の分野から採用された原則に基づいて、Webベースの遠隔視覚的識別実験を導入する。
本研究では,顔のスワップ,フォーミング,リタッチなど,さまざまな種類の顔画像を検出する能力について検討する。
論文 参考訳(メタデータ) (2022-01-28T12:45:33Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
顔のスワップ画像やビデオは、悪意ある攻撃者を惹きつけ、重要な人物の信用を損ねている。
以前のピクセルレベルのアーティファクトに基づく検出技術は、常に不明瞭なパターンにフォーカスするが、利用可能なセマンティックなヒントは無視する。
キーフィギュアの顔・スワップ検出のための外観・形状特徴をフル活用するための生体情報に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-04-28T09:35:48Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
顔の非識別、別名顔の匿名化は、実際のアイデンティティが隠されている間、同様の外観と同じ背景を持つ別の画像を生成することを指します。
我々は,データ駆動型ディープニューラルネットワークと差分プライバシー機構を組み合わせた顔匿名化フレームワークであるIdentityDPを提案する。
我々のモデルは、顔の識別関連情報を効果的に難読化し、視覚的類似性を保ち、高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2021-03-02T14:26:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。